-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOnlyOpponentMotion.stan.R
119 lines (106 loc) · 3.31 KB
/
OnlyOpponentMotion.stan.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
splits <- c("subject", "content",
"displacement",
"target_number_all",
"target_number_shown",
"spacing", "eccentricity", "bias")
relevant <- splits %v% c("n_cw", "n_obs", "normalized_energy", "norm_energy_diff")
# the constant 0..... determined by regression on norm_diff
# me <- chain("motion_energy.csv", read.csv, add_energies)
# lm( norm_diff ~ I(content*target_number_all) - 1, data=me)$coef
# lm( energy_diff ~ I(content*target_number_all) - 1, data=me)$coef
motion_energy_scale <- 0.05136
energy_diff_scale <- 0.01787975
lapse_limit <- 0.05
stan_format <- mkchain(
add_energies,
mutate(normalized_energy =
(norm_diff / motion_energy_scale),
norm_energy_diff =
(energy_diff / energy_diff_scale)),
subset(select=relevant),
as.list,
factorify,
put(names(.), gsub('\\.', '_', names(.))),
within({
N <- length(subject_ix)
motion_energy_scale <- motion_energy_scale
lapse_limit <- lapse_limit
}))
model_code <- '
data {
int<lower=0> N;
int target_number_all[N];
int target_number_shown[N];
real displacement[N];
real content[N];
real spacing[N];
real eccentricity[N];
real normalized_energy[N];
real norm_energy_diff[N];
int n_cw[N];
int n_obs[N];
real motion_energy_scale;
real lapse_limit;
}
transformed data {
real frac_spacing[N];
for (n in 1:N)
frac_spacing[n] <- 2*pi()./target_number_all[n];
}
parameters {
real beta_dx;
real<lower=0, upper=lapse_limit> lapse;
real intercept;
real<lower=0,upper=2*pi()> cs;
real summation;
real repulsion;
real nonlinearity;
}
model {
real crowdedness;
real local_energy;
real global_energy;
real link_displacement;
real link_repulsion;
real link_summation;
real link;
//lapse ~ beta(1.5, 40); //what the shit, this explodes the bias
for (n in 1:N) {
crowdedness <- 2 - 2/(1+exp(-cs/frac_spacing[n]));
local_energy <- normalized_energy[n] / target_number_shown[n];
global_energy <- normalized_energy[n];
link_displacement <- beta_dx * displacement[n] * crowdedness;
link_repulsion <- ( repulsion * local_energy
+ nonlinearity * local_energy * fabs(local_energy));
link_summation <- global_energy * summation;
link <- intercept
+ link_displacement
+ link_repulsion
+ link_summation;
n_cw[n] ~ binomial( n_obs[n],
inv_logit( link ) .* (1-lapse) + lapse/2);
}
}'
stan_predict <- mkchain[., coefs](
mutate(frac_spacing = 2*pi/target_number_all,
normalized_energy = (norm_diff / motion_energy_scale),
local_energy = normalized_energy / target_number_shown,
global_energy = normalized_energy
)
, with(coefs, summarize(
.
, link_displacement = ( beta_dx
* displacement
* (2 - 2/(1+exp(-cs/frac_spacing)))
)
, link_repulsion = ( repulsion * local_energy
+ nonlinearity * (local_energy * abs(local_energy))
)
, link_summation = global_energy * summation
, link = ( intercept
+ link_displacement
+ link_repulsion
+ link_summation
)
, response = plogis(link) * (1-lapse) + lapse/2
)))