Skip to content

Latest commit

 

History

History
26 lines (13 loc) · 1.71 KB

MySQL-Index.md

File metadata and controls

26 lines (13 loc) · 1.71 KB

MySQL 索引原理

现在互联网应用中对数据库的使用多数都是读较多,比例可以达到 10:1。并且数据库在做查询时 IO 消耗较大,所以如果能把一次查询的 IO 次数控制在常量级那对数据库的性能提升将是非常明显的,因此基于 B+ Tree 的索引结构出现了。

B+ Tree 的数据结构

如图所示是 B+ Tree 的数据结构。是由一个一个的磁盘块组成的树形结构,每个磁盘块由数据项和指针组成。

所有的数据都是存放在叶子节点,非叶子节点不存放数据。

查找过程

以磁盘块1为例,指针 P1 表示小于17的磁盘块,P2 表示在 17~35 之间的磁盘块,P3 则表示大于35的磁盘块。

比如要查找数据项99,首先将磁盘块1 load 到内存中,发生 1 次 IO。接着通过二分查找发现 99 大于 35,所以找到了 P3 指针。通过P3 指针发生第二次 IO 将磁盘块4加载到内存。再通过二分查找发现大于87,通过 P3 指针发生了第三次 IO 将磁盘块11 加载到内存。最后再通过一次二分查找找到了数据项99。

由此可见,如果一个几百万的数据查询只需要进行三次 IO 即可找到数据,那么整个效率将是非常高的。

观察树的结构,发现查询需要经历几次 IO 是由树的高度来决定的,而树的高度又由磁盘块,数据项的大小决定的。

磁盘块越大,数据项越小那么树的高度就越低。这也就是为什么索引字段要尽可能小的原因。

索引使用的一些原则