forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
130 lines (111 loc) · 4.65 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python2, python3
"""Functions to test neural networks on real-world images.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
import cv2
import numpy as np
from six.moves import range
import tensorflow.compat.v1 as tf
from deep_homography import hmg_util
from deep_homography import models
from tensorflow.contrib import slim as contrib_slim
slim = contrib_slim
logging = tf.logging
flags.DEFINE_string('image1', None, 'filename of the first input image')
flags.DEFINE_string('image2', None, 'filename of the second input image')
flags.DEFINE_string('model_path', None,
'Where to find the checkpoints for eval')
flags.DEFINE_string('out_dir', None, 'the output path')
flags.DEFINE_integer('train_height', 128,
'Height of images used when training the model')
flags.DEFINE_integer('train_width', 128,
'Width of images used when training the model')
flags.DEFINE_integer('num_level', 3, 'Number of hierarchical levels')
flags.DEFINE_integer('num_layer', 6,
'Number of layers in the motion feature network')
flags.DEFINE_enum('mode', 'test', ['test'], 'Mode of this run')
flags.DEFINE_enum('network_id', 'fmask_sem', ['hier', 'fmask_sem'],
'Type of network')
FLAGS = flags.FLAGS
def run_test():
"""Estimates the homography between two input images.
"""
image1 = cv2.imread(FLAGS.image1)
image2 = cv2.imread(FLAGS.image2)
image_list = [image1, image2]
image_norm_list = []
for i in range(2):
if FLAGS.network_id == 'fmask_sem':
image_scale = cv2.resize(image_list[i],
(FLAGS.train_width, FLAGS.train_height),
cv2.INTER_LANCZOS4)
else:
image_gray = cv2.cvtColor(image_list[i], cv2.COLOR_BGR2GRAY)
image_scale = cv2.resize(image_gray,
(FLAGS.train_width, FLAGS.train_height),
cv2.INTER_LANCZOS4)
image_norm = image_scale / 256.0 - 0.5
image_norm_list.append(image_norm)
if FLAGS.network_id == 'fmask_sem':
norm_image_pair = np.expand_dims(np.concatenate(image_norm_list, 2), axis=0)
num_channel = 3
else:
norm_image_pair = np.expand_dims(np.stack(image_norm_list, -1), axis=0)
num_channel = 1
batch_pairs = tf.placeholder(tf.float32,
[1, FLAGS.train_height, FLAGS.train_width,
2 * num_channel])
with slim.arg_scope(models.homography_arg_scope()):
if FLAGS.network_id == 'fmask_sem':
batch_hmg_prediction, _ = models.hier_homography_fmask_estimator(
batch_pairs, num_param=8, num_layer=FLAGS.num_layer,
num_level=FLAGS.num_level, is_training=False)
else:
batch_hmg_prediction, _ = models.hier_homography_estimator(
batch_pairs, num_param=8, num_layer=FLAGS.num_layer,
num_level=FLAGS.num_level, is_training=False)
batch_warped_result, _ = hmg_util.homography_warp_per_batch(
batch_pairs[Ellipsis, 0 : num_channel],
batch_hmg_prediction[FLAGS.num_level - 1])
saver = tf.Saver()
with tf.Session() as sess:
saver.restore(sess, FLAGS.model_path)
image_warp, homography_list = sess.run(
[batch_warped_result, batch_hmg_prediction],
feed_dict={batch_pairs: norm_image_pair})
for i in range(8):
logging.info('%f ', homography_list[FLAGS.num_level - 1][0][i])
cv2.imwrite('%s/input0.jpg' % FLAGS.out_dir,
(image_norm_list[0] + 0.5) * 256)
cv2.imwrite('%s/input1.jpg' % FLAGS.out_dir,
(image_norm_list[1] + 0.5) * 256)
cv2.imwrite('%s/result.jpg' % FLAGS.out_dir, (image_warp[0] + 0.5) * 256)
def main(_):
if FLAGS.mode == 'test':
flags.mark_flag_as_required('image1')
flags.mark_flag_as_required('image2')
run_test()
else:
raise ValueError('Unknown mode: %s' % FLAGS.mode)
if __name__ == '__main__':
flags.mark_flag_as_required('out_dir')
flags.mark_flag_as_required('model_path')
app.run(main)