forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
123 lines (105 loc) · 4.43 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# coding=utf-8
# Copyright 2019 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions to test neural networks on real-world images.
"""
from absl import app
from absl import flags
import cv2
import numpy as np
import tensorflow as tf
from deep_homography import hmg_util
from deep_homography import models
slim = tf.contrib.slim
logging = tf.logging
flags.DEFINE_string('image1', None, 'filename of the first input image')
flags.DEFINE_string('image2', None, 'filename of the second input image')
flags.DEFINE_string('model_path', None,
'Where to find the checkpoints for eval')
flags.DEFINE_string('out_dir', None, 'the output path')
flags.DEFINE_integer('train_height', 128,
'Height of images used when training the model')
flags.DEFINE_integer('train_width', 128,
'Width of images used when training the model')
flags.DEFINE_integer('num_level', 3, 'Number of hierarchical levels')
flags.DEFINE_integer('num_layer', 6,
'Number of layers in the motion feature network')
flags.DEFINE_enum('mode', 'test', ['test'], 'Mode of this run')
flags.DEFINE_enum('network_id', 'fmask_sem', ['hier', 'fmask_sem'],
'Type of network')
FLAGS = flags.FLAGS
def run_test():
"""Estimates the homography between two input images.
"""
image1 = cv2.imread(FLAGS.image1)
image2 = cv2.imread(FLAGS.image2)
image_list = [image1, image2]
image_norm_list = []
for i in range(2):
if FLAGS.network_id == 'fmask_sem':
image_scale = cv2.resize(image_list[i],
(FLAGS.train_width, FLAGS.train_height),
cv2.INTER_LANCZOS4)
else:
image_gray = cv2.cvtColor(image_list[i], cv2.COLOR_BGR2GRAY)
image_scale = cv2.resize(image_gray,
(FLAGS.train_width, FLAGS.train_height),
cv2.INTER_LANCZOS4)
image_norm = image_scale / 256.0 - 0.5
image_norm_list.append(image_norm)
if FLAGS.network_id == 'fmask_sem':
norm_image_pair = np.expand_dims(np.concatenate(image_norm_list, 2), axis=0)
num_channel = 3
else:
norm_image_pair = np.expand_dims(np.stack(image_norm_list, -1), axis=0)
num_channel = 1
batch_pairs = tf.placeholder(tf.float32,
[1, FLAGS.train_height, FLAGS.train_width,
2 * num_channel])
with slim.arg_scope(models.homography_arg_scope()):
if FLAGS.network_id == 'fmask_sem':
batch_hmg_prediction, _ = models.hier_homography_fmask_estimator(
batch_pairs, num_param=8, num_layer=FLAGS.num_layer,
num_level=FLAGS.num_level, is_training=False)
else:
batch_hmg_prediction, _ = models.hier_homography_estimator(
batch_pairs, num_param=8, num_layer=FLAGS.num_layer,
num_level=FLAGS.num_level, is_training=False)
batch_warped_result, _ = hmg_util.homography_warp_per_batch(
batch_pairs[Ellipsis, 0 : num_channel],
batch_hmg_prediction[FLAGS.num_level - 1])
saver = tf.Saver()
with tf.Session() as sess:
saver.restore(sess, FLAGS.model_path)
image_warp, homography_list = sess.run(
[batch_warped_result, batch_hmg_prediction],
feed_dict={batch_pairs: norm_image_pair})
for i in range(8):
logging.info('%f ', homography_list[FLAGS.num_level - 1][0][i])
cv2.imwrite('%s/input0.jpg' % FLAGS.out_dir,
(image_norm_list[0] + 0.5) * 256)
cv2.imwrite('%s/input1.jpg' % FLAGS.out_dir,
(image_norm_list[1] + 0.5) * 256)
cv2.imwrite('%s/result.jpg' % FLAGS.out_dir, (image_warp[0] + 0.5) * 256)
def main(_):
if FLAGS.mode == 'test':
flags.mark_flag_as_required('image1')
flags.mark_flag_as_required('image2')
run_test()
else:
raise ValueError('Unknown mode: %s' % FLAGS.mode)
if __name__ == '__main__':
flags.mark_flag_as_required('out_dir')
flags.mark_flag_as_required('model_path')
app.run(main)