@@ -194,13 +194,22 @@ The full presentation, including links to the diffusion model (DDPM), is availab
194194  ➔ <span  style =" color darkred " >Use of Monte Carlo framework to estimate some distributions !</span >  
195195
196196
197- ### Data fidelity  
197+ ### Data fidelity term   
198198*  The data fidelity term can be expressed as:
199-   ➔ $$ \mathcal{L}_{rec} = \mathbb{E}_{q(z_{\mathcal{P}_l},\mathcal{P}_l \mid x)}[ \text{log} \, p(x \mid z_{\mathcal{P}_l},\mathcal{P}_l) ] $$ 
200-   ➔ <span  style =" color darkred " >$$ \mathcal{L}_{rec} \approx \frac{1}{M} \sum_{m=1}^{M} \sum_{l\in \mathbb{L}}{P(l;c)\log \mathcal{N(x \mid \ mu_{x,l}(z_l^{(m)}),\sigma_{x,l}^2(z_l^{(m)}))}} $$ </span > <br ><br >   
199+   ➔ $$ \mathcal{L}_{rec} = \mathbb{E}_{q(z_{\mathcal{P}_l},\mathcal{P}_l \mid x)}[ \text{log} \, p(x \mid z_{\mathcal{P}_l},\mathcal{P}_l) ] $$  < br > 
200+   ➔ <span  style =" color darkred " >$$ \mathcal{L}_{rec} \approx \frac{1}{M} \sum_{m=1}^{M} \sum_{l\in \mathbb{L}}{P(l;c)\log ( \mathcal{N(\ mu_{x,l}(z_l^{(m)}),\sigma_{x,l}^2(z_l^{(m)}) ))}} $$ </span > <br ><br >   
201201  -  with $$ P(i;c)=\prod_{j\in P_{i \backslash \{0\}}}q(c_{pa(j) \rightarrow j} \mid x) $$  for $$ i \in \mathbb{V} $$  the probability of reaching node $$ i $$  which is the product over the probabilities of the decisions in the path until $$ i $$ 
202202  -  with $$ z_l^{(m)} $$  the Monte Carlo (MC) samples, and $$ M $$  the number of the MC samples.
203203
204+ ### Distributions fit term  
205+ *  The distributions fit term can be expressed as:
206+   ➔ <span  style =" color darkred " >$$ \text{KL}(q(z_{\mathcal{P}_l},\mathcal{P}_l \mid x) \parallel p(z_{\mathcal{P}_l},\mathcal{P}_l) ) = \text{KL}_{root} + \text{KL}_{nodes} + \text{KL}_{decisions} $$ </span ><br >
207+   ➔ $$ \text{KL}_{root} = \text{KL}(q(z_0 \mid x) \parallel p(z_0)) $$  <br >
208+   ➔ $$ \text{KL}_{nodes} \approx \frac{1}{M} \sum_{m=1}^{M} \sum_{i \in \mathbb{V} \backslash \{0\}} P(i;c) \, \text{KL}(q(z_i^{(m)} \mid pa(z_i^{(m)})) \parallel p(z_i^{(m)} \mid pa(z_i^{(m)}))) $$  <br >
209+   ➔ $$ \text{KL}_{decisions} \approx \frac{1}{M} \sum_{m=1}^{M} \sum_{i \in \mathbb{V} \backslash \{\mathbb{L}\}} P(i;c) \, \text{KL}(q(c_i \mid x) \parallel p(c_i \mid z_i)) $$  <br >
210+ 
211+ 
212+ 
204213# Experiments  
205214
206215*  Evaluation on 8 public datasets (small images): MNIST, Fashion-MNIST, 20Newsgroups, Omniglot, Omniglot-5, CIFAR-10 and CIFAR-100, CelebA
0 commit comments