diff --git a/2-Regression/4-Logistic/README.md b/2-Regression/4-Logistic/README.md index f694a554a2..2f31b6ed44 100644 --- a/2-Regression/4-Logistic/README.md +++ b/2-Regression/4-Logistic/README.md @@ -237,9 +237,9 @@ As you might have guessed it's preferable to have a larger number of true positi Let's revisit the terms we saw earlier with the help of the confusion matrix's mapping of TP/TN and FP/FN: -🎓 Precision: TP/(TP + FN) The fraction of relevant instances among the retrieved instances (e.g. which labels were well-labeled) +🎓 Precision: TP/(TP + FP) The fraction of relevant instances among the retrieved instances (e.g. which labels were well-labeled) -🎓 Recall: TP/(TP + FP) The fraction of relevant instances that were retrieved, whether well-labeled or not +🎓 Recall: TP/(TP + FN) The fraction of relevant instances that were retrieved, whether well-labeled or not 🎓 f1-score: (2 * precision * recall)/(precision + recall) A weighted average of the precision and recall, with best being 1 and worst being 0 diff --git a/2-Regression/4-Logistic/translations/README.id.md b/2-Regression/4-Logistic/translations/README.id.md index ac5a3a98a5..fa47aea32f 100644 --- a/2-Regression/4-Logistic/translations/README.id.md +++ b/2-Regression/4-Logistic/translations/README.id.md @@ -245,9 +245,9 @@ Mari kita lihat kembali istilah-istilah yang kita lihat tadi dengan bantuan matr > NB: Negatif benar > NP: Negatif palsu -🎓 Presisi: PB/(PB + NP) Rasio titik data relevan antara semua titik data (seperti data mana yang benar dilabelkannya) +🎓 Presisi: PB/(PB + PP) Rasio titik data relevan antara semua titik data (seperti data mana yang benar dilabelkannya) -🎓 *Recall*: PB/(PB + PP) Rasio titk data relevan yang digunakan, maupun labelnya benar atau tidak. +🎓 *Recall*: PB/(PB + NP) Rasio titk data relevan yang digunakan, maupun labelnya benar atau tidak. 🎓 *f1-score*: (2 * Presisi * *Recall*)/(Presisi + *Recall*) Sebuah rata-rata tertimbang antara presisi dan *recall*. 1 itu baik dan 0 itu buruk. diff --git a/2-Regression/4-Logistic/translations/README.it.md b/2-Regression/4-Logistic/translations/README.it.md index 6a31f5fb4e..3b30cf685c 100644 --- a/2-Regression/4-Logistic/translations/README.it.md +++ b/2-Regression/4-Logistic/translations/README.it.md @@ -238,9 +238,9 @@ Come si sarà intuito, è preferibile avere un numero maggiore di veri positivi I termini visti in precedenza vengono rivisitati con l'aiuto della mappatura della matrice di confusione di TP/TN e FP/FN: -🎓 Precisione: TP/(TP + FN) La frazione di istanze rilevanti tra le istanze recuperate (ad es. quali etichette erano ben etichettate) +🎓 Precisione: TP/(TP + FP) La frazione di istanze rilevanti tra le istanze recuperate (ad es. quali etichette erano ben etichettate) -🎓 Richiamo: TP/(TP + FP) La frazione di istanze rilevanti che sono state recuperate, ben etichettate o meno +🎓 Richiamo: TP/(TP + FN) La frazione di istanze rilevanti che sono state recuperate, ben etichettate o meno 🎓 f1-score: (2 * precisione * richiamo)/(precisione + richiamo) Una media ponderata della precisione e del richiamo, dove il migliore è 1 e il peggiore è 0 diff --git a/2-Regression/4-Logistic/translations/README.zh-cn.md b/2-Regression/4-Logistic/translations/README.zh-cn.md index b4397856b5..3a5ff92609 100644 --- a/2-Regression/4-Logistic/translations/README.zh-cn.md +++ b/2-Regression/4-Logistic/translations/README.zh-cn.md @@ -238,9 +238,9 @@ Seaborn提供了一些巧妙的方法来可视化你的数据。例如,你可 让我们借助混淆矩阵对TP/TN和FP/FN的映射,重新审视一下我们之前看到的术语: -🎓 准确率:TP/(TP+FN)检索实例中相关实例的分数(例如,哪些标签标记得很好) +🎓 准确率:TP/(TP + FP) 检索实例中相关实例的分数(例如,哪些标签标记得很好) -🎓 召回率: TP/(TP + FP) 检索到的相关实例的比例,无论是否标记良好 +🎓 召回率: TP/(TP + FN) 检索到的相关实例的比例,无论是否标记良好 🎓 F1分数: (2 * 准确率 * 召回率)/(准确率 + 召回率) 准确率和召回率的加权平均值,最好为1,最差为0