-
Notifications
You must be signed in to change notification settings - Fork 2
/
README
44 lines (36 loc) · 1.62 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Forked from TI Repo https://git.ti.com/git/apps/tensorflow-lite-examples.git
Tensorflow Lite demos with input via OpenCV and used for gem5 full system simulation
Procedure to build
----------------------------
Step 1: Set environment variables
* Arm only:
- export TARGET_TOOLCHAIN_PREFIX
- export TF_SRC_DIR
- export OPENCV_SRC_DIR
Step 2: Run "make" from the top-level directory to build the demos
Example:
$ export TARGET_TOOLCHAIN_PREFIX=aarch64-linux-gnu-
$ export TF_SRC_DIR="/home/craft/workspace/gem5/tensorflow_src"
$ export OPENCV_SRC_DIR="/home/craft/workspace/gem5/opencv"
$ make
Binaries to run on target
---------------------------
* Classification: run "tflite_classification" with command usage as below:
--tflite_model, -m: model_name.tflite
--input_src, -r: [0|1|2] input source: image 0, video 1, camera 2
--input_path, -i: path of the input image/video or video port for camera, e.g., 1 for /dev/video1
--labels, -l: labels for the model
--frame_cnt, -c: the number of frames to be used
--input_mean, -b: input mean
--input_std, -s: input standard deviation
--profiling, -p: [0|1], profiling or not
--threads, -t: number of threads
* Segmentation: run "tflite_segmentation" with command usage as below
--tflite_model, -m: model_name.tflite
--input_src, -r: [0|1|2] input source: image 0, video 1, camera 2
--input_path, -i: path of the input image/video or video port for camera, e.g., 1 for /dev/video1
--frame_cnt, -c: the number of frames to be used
--input_mean, -b: input mean
--input_std, -s: input standard deviation
--profiling, -p: [0|1], profiling or not
--threads, -t: number of threads