-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTreeStructure.py
951 lines (752 loc) · 33.9 KB
/
TreeStructure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
import time
import random
import sys
import munkres
import numpy as np
import utils as ut
from tqdm import tqdm
from munkres import Munkres, DISALLOWED
class Node:
def __init__(self, cpoint, pointIndex=None):
"""二叉树的节点
:param cpoint: 该节点的中心点
:param pointIndex: 叶子节点所代表的集合 ,非叶子节点这里是None
"""
# 节点的基本信息
self.cpoint = cpoint
self.pointIndex = pointIndex
self.pointnum = None # 用来标记当前节点的子树一共包含多少个点
self.Id = None
self.father = None # 用来标记当前节点的父节点
self.lchild = None # 左孩子
self.rchild = None # 右孩子
self.fatherId = None
self.lchildId = None
self.rchildId = None
# 优化信息
self.flag = None # 这个是准备合并的时候用来标记的
self.elements = [] # beam search得到的备份的元素[元素的ID,元素出现的次数]
self.items = [] # beam search得到的备份的元素[元素ID,叶子节点的ID,在Knn中出现的次数]
class BinaryTree:
"""二叉树
"""
def __init__(self):
self.root = None
self.nodes = [] # 树中的所有节点,保持空列表,使用时调用postOrder,用完清空
self.leafNodes = [] # 树中所有的叶子节点
self.recursion = 0 # 记录递归次数,同时给树的节点编号
def TDcluster(self, k, node, pointsIndex, matrix, iteration=15, cluster_size=6):
"""
:param k: k是最近邻的个数,树结构与k有关
:param node: 树的节点,开始时为树的根节点
:param pointsIndex: 需要分类的点的索引
:param matrix: 分类点索引对应的具体坐标
:param iteration: Kmeans的最大迭代次数,默认为 15
:return:
"""
matrix = np.asarray(matrix)
if len(pointsIndex) < cluster_size * k:
pointNum, cpoint = ut.CentralPointOfCluster(pointsIndex, matrix)
leafNode = Node(cpoint, pointsIndex)
leafNode.pointnum = pointNum
self.leafNodes.append(leafNode)
leafNode.Id = node.Id
if node.father is None:
leafNode.father = node.father
leafNode.fatherId = node.Id
else:
leafNode.father = node.father
leafNode.fatherId = node.father.Id
return leafNode
else:
"""
这里找相对距离最远的中心点的方式为:找到未被划分的簇的中心点,找到距离中心点最远的数据点1,
再找到距离数据点1最远的数据点2,该方法的时间复杂度为3n
"""
# 随机给出两个两个簇的中心点
cluster1 = matrix[0]
cluster2 = matrix[0]
# 找出中心点
pointNum, cpoint = ut.CentralPointOfCluster(pointsIndex, matrix)
# 找出相距中心点最远的点,即找到数据点1
maxDistance = -float("inf")
for ponint1Index in pointsIndex:
v1 = matrix[ponint1Index]
v2 = cpoint
distance = ut.Compute_Euclidean(v1, v2)
if maxDistance < distance:
maxDistance = distance
cluster1 = v1
# 找出相距数据点1最远的数据点2,即找到相对最远的两个点
maxDistance = -float("inf")
for ponint1Index in pointsIndex:
v2 = matrix[ponint1Index]
v1 = cluster1
distance = ut.Compute_Euclidean(v1, v2)
if maxDistance < distance:
maxDistance = distance
cluster2 = v2
# 给定聚类的中心点,即相对最远的两个数据点,有效降低迭代次数,优化聚类效果
cpoints = []
cpoints.append(cluster1)
cpoints.append(cluster2)
result = ut.Kmeans(cpoints, pointsIndex, matrix, iteration=iteration)
self.recursion += 1
node1 = Node(result[0][0])
node1.pointnum = len(result[0][1])
node1.Id = self.recursion
node1.father = node
node1.fatherId = node.Id
self.recursion += 1
node2 = Node(result[1][0])
node2.pointnum = len(result[1][1])
node2.Id = self.recursion
node2.father = node
node2.fatherId = node.Id
node.lchild = self.TDcluster(k, node1, result[0][1], matrix)
node.rchild = self.TDcluster(k, node2, result[1][1], matrix)
node.lchildId = node1.Id
node.rchildId = node2.Id
return node
def search_C(self, point, c=1):
""" 在树中选择c枝查找结果
:param point: 待查找的点
:param c: 在树中查找的枝数
:return: 候选点的集合, 叶子节点集合
"""
# 防止叶子节点数小于遍历的枝数
if len(self.leafNodes) < c:
c = len(self.leafNodes)
result = []
queue = []
queue.append(self.root)
while True:
# 踢掉队列中的元素,把它的孩子节点添加进来
for snode in queue:
if snode.lchild is not None:
queue.append(snode.lchild)
if snode in queue:
queue.remove(snode)
if snode.rchild is not None:
queue.append(snode.rchild)
if snode in queue:
queue.remove(snode)
# 存储queue中点到查询点的距离
Distance = []
if len(queue) < c:
# 当查到的节点小于查询的枝数的时候,不做排序处理,继续添加节点,有效避免无效排序
continue
elif len(queue) >= c:
v1 = np.asarray(point)
for snode in queue:
v2 = snode.cpoint
distance = ut.Compute_Euclidean(v1, v2)
Distance.append(distance)
DistanceOriginal = Distance.copy()
# print(Distance)
Distance.sort()
QueueOriginal = queue.copy()
for i in range(len(Distance)):
index = DistanceOriginal.index(Distance[i])
queue[i] = QueueOriginal[index]
DistanceOriginal[index] = -1
# 保留距离查询点最近的c个节点(不一定全是叶子节点)
queue = queue[:c]
# 当queue中所有节点都为叶子节点时,查询结束
sum_unleafs = 0
for snode in queue:
if snode.pointIndex is None:
sum_unleafs += 1
if c - sum_unleafs == c:
for lnode in queue:
result.extend(lnode.pointIndex)
break
result = list(set(result))
return result, queue
def postOrder(self, node):
""" 后序遍历,不输出任何信息,而是将整个树的节点都存在nodes中
:param node: 树的节点,开始时是树的根节点
:return:
"""
if node is None:
return
self.postOrder(node.lchild)
self.postOrder(node.rchild)
self.nodes.append(node)
def SaveTree(self, filename):
# 这里需要清空是害怕 postOrder 曾被多次调用过
self.nodes = []
self.postOrder(self.root)
simple = Node([])
nodeList = [simple for i in range(self.recursion + 1)]
for node in self.nodes:
if not nodeList[node.Id].cpoint:
nodeList[node.Id] = node
else:
print("出现重复节点,代码有误")
file = open(filename, "w")
for node in nodeList:
file.write("{}#".x(node.Id)) # 0
file.write("{}#".format(node.fatherId)) # 1
file.write("{}#".format(node.lchildId)) # 2
file.write("{}#".format(node.rchildId)) # 3
file.write("{}#".format(node.cpoint)) # 4
file.write("{}#".format(node.pointIndex)) # 5
file.write("{}#".format(node.elements)) # 6
file.write("{}#".format(node.items)) # 7
file.write("{}#".format(node.pointnum)) # 8
file.write("{}\n".format(node.flag)) # 9
file.close()
self.nodes = []
def LoadTree(self, fileName):
nodeList = []
with open(fileName, "r") as file:
nodeMatrix = file.readlines()
for nodestr in nodeMatrix:
# 用 "#" 将节点的各个属性分离出来
elementsStr = nodestr[:-1].split("#")
nodeId = -1 # 点的 ID
nodeFatherId = None # 点的父节点的 ID
nodeLchildId = None # 点的左孩子节点的 ID
nodeRchildId = None # 点的右孩子节点的 ID
nodeCpoint = [] # 中心点
nodePointIndex = [] # 非叶子节点为 None,叶子节点存储的是类中点的索引
nodeElements = [] # [[重复元素 Id, 出现次数], [], ...]
nodeItems = [] # [[叶子节点 Id,叶子节点出现次数], ...]
nodePointnum = None # 用来标记当前节点的子树一共包含多少个点
nodeFlag = None # 这个是准备合并的时候用来标记的
for i in range(len(elementsStr)):
if i == 0:
# 点的ID
nodeId = int(elementsStr[i])
elif i == 1:
# 点的父节点的ID
if elementsStr[i] == "None":
nodeFatherId = None
else:
nodeFatherId = int(elementsStr[i])
elif i == 2:
# 点的左孩子节点的ID
if elementsStr[i] == "None":
nodeLchildId = None
else:
nodeLchildId = int(elementsStr[i])
elif i == 3:
# 点的右孩子节点的ID
if elementsStr[i] == "None":
nodeRchildId = None
else:
nodeRchildId = int(elementsStr[i])
elif i == 4:
# 中心点
strNumList = elementsStr[i][1:-1].split(",")
for num in strNumList:
num.strip()
nodeCpoint.append(float(num))
elif i == 5:
# 非叶子节点为None,叶子节点存储的是类中点的索引
if elementsStr[i] == "None":
nodePointIndex = None
else:
strNumList = elementsStr[i][1:-1].split(",")
for num in strNumList:
num.strip()
if len(num) > 0:
nodePointIndex.append(int(num))
elif i == 6:
# [[重复元素 Id, 出现次数], [], ...]
if elementsStr[i] == "[]":
nodeElements = []
else:
strTuples = elementsStr[i][1:-1].split("]")
for segment in strTuples:
element = []
if len(segment) >= 1:
if segment[0] == ",":
segment = segment[3:]
elif segment[0] == "[":
segment = segment[1:]
else:
# 这里说明一下,连续两个]]用“]”来分割的话,会出现一个空字符即"",长度为0
# print("出现不明物体'{}'".format(segment))
continue
for strNum in segment.split(","):
strNum = strNum.strip()
element.append(int(strNum))
nodeElements.append(element)
elif i == 7:
# [[元素ID,在Knn中出现的次数,叶子节点的ID], ...]
if elementsStr[i] == "[]":
nodeItems = []
else:
strTuples = elementsStr[i][1:-1].split("]")
for segment in strTuples:
item = []
if len(segment) >= 1:
if segment[0] == ",":
segment = segment[3:]
elif segment[0] == "[":
segment = segment[1:]
else:
# print("出现不明物体'{}'".format(segment))
continue
for strNum in segment.split(","):
strNum = strNum.strip()
item.append(int(strNum))
nodeItems.append(item)
elif i == 8:
# 用来标记当前节点的子树一共包含多少个点
nodePointnum = int(elementsStr[i])
elif i == 9:
# 这个是准备合并的时候用来标记的
if elementsStr[i] == "None":
nodeFlag = None
else:
nodeFlag = int(elementsStr[i])
node = Node(nodeCpoint)
node.Id = nodeId
node.fatherId = nodeFatherId
node.lchildId = nodeLchildId
node.rchildId = nodeRchildId
node.pointIndex = nodePointIndex
node.elements = nodeElements
node.items = nodeItems
node.pointnum = nodePointnum
node.flag = nodeFlag
nodeList.append(node)
for node in nodeList:
if node.Id == 0:
if node.lchildId is None:
node.lchild = None
else:
node.lchild = nodeList[node.lchildId]
if node.rchildId is None:
node.rchild = None
else:
node.rchild = nodeList[node.rchildId]
else:
if node.lchildId is None:
node.lchild = None
else:
node.lchild = nodeList[node.lchildId]
if node.rchildId is None:
node.rchild = None
else:
node.rchild = nodeList[node.rchildId]
node.father = nodeList[node.fatherId]
self.root = nodeList[0]
self.nodes = []
self.postOrder(self.root)
self.recursion = len(self.nodes) - 1
for node in self.nodes:
if node.pointIndex is not None:
self.leafNodes.append(node)
self.nodes = []
def TreeInformation(self, node):
# 这里是计算树的深度
leftDeep = 0
rightDeep = 0
if node is None:
return 0
else:
leftDeep = self.TreeInformation(node.lchild)
rightDeep = self.TreeInformation(node.rchild)
return max(leftDeep, rightDeep) + 1
class ElementsTree(BinaryTree):
"""增加重复元素的二叉树,即增加了数组
"""
def __init__(self):
super(ElementsTree, self).__init__()
self.root = None
self.nodes = []
self.leafNodes = [] # 保存叶子节点
self.recursion = 0 # 给节点编号
def searchElement_C(self, point, c=1):
""" 在树中选择c枝查找结果
:param point: 待查找的点
:param c: 在树中查找的枝数
:return: 候选点的集合, 叶子节点集合
"""
# 防止叶子节点数小于遍历的枝数
if len(self.leafNodes) < c:
c = len(self.leafNodes)
result = []
queue = [self.root]
while True:
for snode in queue:
if snode.lchild is not None:
queue.append(snode.lchild)
if snode in queue:
queue.remove(snode)
if snode.rchild is not None:
queue.append(snode.rchild)
if snode in queue:
queue.remove(snode)
# 存储queue中点到查询点的距离
Distance = []
if len(queue) < c:
continue
elif len(queue) >= c:
v1 = np.asarray(point)
for snode in queue:
v2 = snode.cpoint
distance = ut.Compute_Euclidean(v1, v2)
Distance.append(distance)
DistanceOriginal = Distance.copy()
Distance.sort()
QueueOriginal = queue.copy()
for i in range(len(Distance)):
index = DistanceOriginal.index(Distance[i])
queue[i] = QueueOriginal[index]
DistanceOriginal[index] = -1
# 保留距离查询点最近的c个节点(不一定全是叶子节点)
queue = queue[:c]
# 当queue中所有节点都为叶子节点时,查询结束
sum_unleafs = 0
for snode in queue:
if snode.pointIndex is None:
sum_unleafs += 1
if c - sum_unleafs == c:
for lnode in queue:
result.extend(lnode.pointIndex)
# item 是 [元素Id,元素所在的叶子节点,出现的次数],将数组中的元素也纳入考虑范围
for element in lnode.elements:
result.append(element[0])
break
result = list(set(result))
return result, queue
def ElementsOptimization(self, data_Matrix, optimizeMatrix, k=10, c=1, multiple=3, search=500, optimizeTruth=None):
"""
:param data_Matrix: 数据点
:param optimizeMatrix: 待优化的点
:param optimizeTruth: 待优化的点的真实的Knn的集合
:param k: 最近邻个数
:param c: 搜索枝数
:param multiple: 重复元素最大个数是最近邻个数的倍数
:param search: 搜索枝数的倍数
:return:
"""
# 如果没有给出真实的Knn的结果,就用搜索search枝的结果来近似的代替真实结果
if optimizeTruth is None:
optimizeTruth = []
for point in tqdm(optimizeMatrix):
realCandid, nodesOfElement = self.search_C(point, search*c)
real, RDistance = ut.Knn(k, point, realCandid, data_Matrix)
optimizeTruth.append((real, RDistance))
for i in tqdm(range(len(optimizeMatrix))):
point = optimizeMatrix[i]
# 预测的Knn的点
predictCandid, leafNodes = self.search_C(point, c)
predict, PDistance = ut.Knn(k, point, predictCandid, data_Matrix)
real, RDistance = optimizeTruth[i]
repeatElements = list(set(real) - set(predict))
# 把所有的重复元素放入到涉及的叶子节点中
for lNode in leafNodes:
# 检查叶子的数组中是否已经包含该元素
for repeatElement in repeatElements:
flag = True
minFrequency = float("inf")
for element in lNode.elements:
# 找到当前节点的最小频率
if minFrequency > element[1]:
minFrequency = element[1]
if repeatElement == element[0]:
element[1] += 1
flag = False
break
if flag:
if minFrequency == float("inf"):
minFrequency = 1
lNode.elements.append([repeatElement, minFrequency])
elementsLen = multiple * k
if len(lNode.elements) > elementsLen:
elementsOriginal = lNode.elements.copy()
frequencys = []
for element in lNode.elements:
frequencys.append(element[1])
frequencys.sort()
for j in range(len(elementsOriginal)):
index = frequencys.index(elementsOriginal[j][1])
lNode.elements[index] = elementsOriginal[j]
frequencys[index] = -1
lNode.elements = lNode.elements[-elementsLen:]
class ItemsTree(ElementsTree):
""" 增加频繁项的二叉树
"""
def __init__(self):
super(ItemsTree, self).__init__()
self.root = None
self.nodes = [] # 树中的所有节点,保持空列表,使用时调用postOrder,用完清空
self.leafNodes = [] # 树中所有的叶子节点
self.recursion = 0 # 记录递归次数,同时给树的节点编号
def ItemsOptimization(self, data_Matrix, optimizeMatrix, k=10, c=1, search=500, optimizeTruth=None):
"""
:param data_Matrix: 训练集
:param optimizeMatrix: 待优化的点
:param optimizeTruth: 待优化的点的真实的Knn的集合
:param k: 最近邻个数
:param c: 搜索枝数
:param multiple: 重复元素最大个数是最近邻个数的倍数
:param search: 搜索枝数的倍数
:return:
"""
# 如果没有给出真实的Knn的结果,就用搜索search枝的结果来近似的代替真实结果
if optimizeTruth is None:
optimizeTruth = []
for point in tqdm(optimizeMatrix):
realCandid, nodesOfItem = self.search_C(point, search * c)
real, RDistance = ut.Knn(k, point, realCandid, data_Matrix)
optimizeTruth.append((real, RDistance, nodesOfItem))
for i in range(len(optimizeMatrix)):
point = optimizeMatrix[i]
# 预测的Knn的点
predictCandid, leafNodes = self.search_C(point, c)
# optimizeTruth是真实的Knn或者是搜索枝数c为 500 时近似的Knn
real, RDistance, nodesOfItem = optimizeTruth[i]
# 将聚簇分类得到的Knn也加入优化的节点中
nodesOfItem.extend(leafNodes)
# 把所有参加 Knn 的元素放入到涉及的叶子的Item中
for lNode in leafNodes:
# 检查叶子的Item中是否已经包含该元素
for pointIndex in real:
flag = True
for item in lNode.items:
if pointIndex == item[0]:
item[2] += 1
flag = False
break
# 如果叶子没有包含Item,则将其放入
if flag:
leafIdOfItem = -1
for node in nodesOfItem:
if pointIndex in node.pointIndex:
leafIdOfItem = node.Id
break
lNode.items.append([pointIndex, leafIdOfItem, 1])
def RepartionOptimization(self, data_Matrix, file_name, k=10, cluster_size=6):
# 这里需要清空是害怕 postOrder 曾被多次调用过
self.nodes = []
self.postOrder(self.root)
simple = Node([])
nodeList = [simple for i in range(self.recursion + 1)]
for node in self.nodes:
if not nodeList[node.Id].cpoint:
nodeList[node.Id] = node
else:
print("出现重复节点,代码有误")
# 构建相关性矩阵
leafWithItems = []
for leaf in self.leafNodes:
if len(leaf.items) != 0:
leafWithItems.append(leaf)
# 取出叶子节点的Id
leafId = []
# Items不为空的叶子节点中包含的涉及 Knn 的点
pointInKnn = []
for leaf in leafWithItems:
leafId.append(leaf.Id)
for item in leaf.items:
if item[0] in pointInKnn:
continue
if item[0] in nodeList[item[1]].pointIndex:
index = nodeList[item[1]].pointIndex.index(item[0])
del nodeList[item[1]].pointIndex[index]
pointInKnn.append(item[0])
# Items不为空的叶子节点中包含的不涉及 Knn 的点
pointNotInKnn = []
for leaf in leafWithItems:
for pointIndex in leaf.pointIndex:
if pointIndex in pointInKnn:
continue
else:
pointNotInKnn.append(pointIndex)
# 清空元素节点的聚簇结果
leaf.pointIndex = []
# 构建二部图的矩阵
matrix = []
for i in range(len(leafWithItems)):
weigt = [0 for _ in range(len(pointInKnn))]
for item in leafWithItems[i].items:
weigt[pointInKnn.index(item[0])] = item[2]
for _ in range(cluster_size * k):
matrix.append(weigt)
# print(matrix)
print(np.array(matrix).shape)
# 计算最大匹配
matrix = munkres.make_cost_matrix(
matrix, lambda cost: sys.maxsize - cost if
(cost != DISALLOWED) else DISALLOWED)
indices = Munkres().compute(matrix)
# 把最大匹配的结果写出来
with open(file_name, "w") as f:
for t in indices:
f.write("{}\n".format(t))
for leaf in leafWithItems:
leaf.items = []
# 重新分配涉及到 knn 的元素
for repartitionKnn in indices:
leafIndex, pointIndex = repartitionKnn
leafIndex = int(leafIndex / (cluster_size * k))
leafWithItems[leafIndex].pointIndex.append(pointInKnn[pointIndex])
# 重新分配没涉及到 Knn 的节点
for pointIndex in pointNotInKnn:
distance = []
flag = True
v1 = data_Matrix[pointIndex]
for leaf in leafWithItems:
v2 = leaf.cpoint
distance.append(ut.Compute_Euclidean(v1, v2))
distanceCopy = distance.copy()
distanceCopy.sort()
for _ in distanceCopy:
index = distance.index(_)
if len(leafWithItems[index].pointIndex) < cluster_size * k:
leafWithItems[index].pointIndex.append(pointIndex)
flag = False
break
if flag:
index = distance.index(distanceCopy[0])
leafWithItems[index].pointIndex.append(pointIndex)
def IncrementalRepartion(self, data_Matrix, file_name, k=10, cluster_size=6, portion_size =4000):
"""
:param data_Matrix: 数据的坐标点
:param file_name:
:param k: 最近邻个数
:param cluster_size: 重复元素最大个数是最近邻个数的倍数
:param portion_size:
:return:
"""
save_name = ""
dir_list = file_name.split("/")
for i in range(len(dir_list) - 1):
save_name += dir_list[i] + "/"
# 登录数据集
dataMatrix, trainDataset, trainKnn = ut.LoadDataset(file_name)
portion_indexes = random.sample(range(0, int(len(trainDataset) / portion_size)), int(0.4 * len(trainDataset) / portion_size))
# 记录曾经出现过的Knn
index_dictionary = {}
for i in range(len(portion_indexes)):
# 登录数据集
dataMatrix, trainDataset, trainKnn = ut.LoadDataset(file_name)
portion_index = portion_indexes[i]
start_train = portion_index * portion_size
if start_train + portion_size > len(trainDataset):
end_train = len(trainDataset)
else:
end_train = start_train + portion_size
trainDataset = trainDataset[start_train:end_train]
print("第 {} 轮".format(i))
# 激活elements优化条件,目前追求的是最高的准确率,所以表示为任意时候都激活
thea = 0
# for index in range(testMatrix.shape[0]):
# KnnIndex, KnnDistance = testTruth[index]
# thea += KnnDistance[thea_num]
# thea = thea / testMatrix.shape[0]
# 需要优化的查询点
optimizeMatrix = []
for index in range(trainDataset.shape[0]):
point = trainDataset[index]
# 为了平衡时间,所以搜索枝数为1
candid, _ = self.search_C(point, 1)
predict, predictDistance = ut.Knn(k, point, candid, dataMatrix)
predictThea = 0
for distance in predictDistance:
predictThea += distance
if len(predictDistance) > 0:
predictThea = predictThea / len(predictDistance)
if predictThea > thea or len(predictDistance) < k:
optimizeMatrix.append(point)
self.ItemsOptimization(dataMatrix, optimizeMatrix)
# 这里需要清空是害怕 postOrder 曾被多次调用过
self.nodes = []
self.postOrder(self.root)
simple = Node([])
nodeList = [simple for i in range(self.recursion + 1)]
for node in self.nodes:
if not nodeList[node.Id].cpoint:
nodeList[node.Id] = node
else:
print("出现重复节点,代码有误")
# 构建相关性矩阵
leafWithItems = []
for leaf in self.leafNodes:
if len(leaf.items) != 0:
leafWithItems.append(leaf)
# 取出叶子节点的Id
leafId = []
# Items不为空的叶子节点中包含的涉及 Knn 的点
pointInKnn = []
for leaf in leafWithItems:
leafId.append(leaf.Id)
for item in leaf.items:
if str(item[0]) in index_dictionary.keys():
index_dictionary[str(item[0])] += 1
else:
index_dictionary[str(item[0])] = item[2]
if item[0] in pointInKnn:
continue
if item[0] in nodeList[item[1]].pointIndex:
index = nodeList[item[1]].pointIndex.index(item[0])
del nodeList[item[1]].pointIndex[index]
pointInKnn.append(item[0])
# Items不为空的叶子节点中包含的不涉及 Knn 的点
pointNotInKnn = []
for leaf in leafWithItems:
for pointIndex in leaf.pointIndex:
if pointIndex in index_dictionary.keys():
continue
else:
pointNotInKnn.append(pointIndex)
# 清除掉不涉及到knn的结果
index = leaf.pointIndex.index(pointIndex)
del leaf.pointIndex[index]
# 清空元素节点的聚簇结果
# leaf.pointIndex = []
# 构建二部图的矩阵
matrix = []
for i in range(len(leafWithItems)):
weigt = [0 for _ in range(len(pointInKnn))]
for item in leafWithItems[i].items:
weigt[pointInKnn.index(item[0])] = index_dictionary[str(item[0])]
for _ in range(cluster_size * k):
matrix.append(weigt)
# print(matrix)
print(np.array(matrix).shape)
# 计算最大匹配
matrix = munkres.make_cost_matrix(
matrix, lambda cost: sys.maxsize - cost if
(cost != DISALLOWED) else DISALLOWED)
indices = Munkres().compute(matrix)
# 把最大匹配的结果写出来
with open(save_name + "indices.txt", "w") as f:
for t in indices:
f.write("{}\n".format(t))
# 清空叶子节点中的items
for leaf in leafWithItems:
leaf.items = []
# 重新分配涉及到 knn 的元素
for repartitionKnn in indices:
leafIndex, pointIndex = repartitionKnn
leafIndex = int(leafIndex / (cluster_size * k))
if pointInKnn[pointIndex] in leafWithItems[leafIndex].pointIndex:
continue
leafWithItems[leafIndex].pointIndex.append(pointInKnn[pointIndex])
# 重新分配没涉及到 Knn 的节点
for pointIndex in pointNotInKnn:
distance = []
flag = True
v1 = data_Matrix[pointIndex]
for leaf in leafWithItems:
v2 = leaf.cpoint
distance.append(ut.Compute_Euclidean(v1, v2))
distanceCopy = distance.copy()
distanceCopy.sort()
for _ in distanceCopy:
index = distance.index(_)
if len(leafWithItems[index].pointIndex) < cluster_size * k:
leafWithItems[index].pointIndex.append(pointIndex)
flag = False
break
if flag:
index = distance.index(distanceCopy[0])
leafWithItems[index].pointIndex.append(pointIndex)