forked from GantMan/nsfw_model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisuals.py
83 lines (67 loc) · 2.49 KB
/
visuals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
print(__doc__)
import itertools
import matplotlib.pyplot as plt
import os
import numpy as np
from keras.preprocessing import image
from pathlib import Path
from keras.models import load_model
from sklearn.metrics import confusion_matrix, classification_report
model = load_model("nsfw.299x299.h5")
test_dir = 'D:\\nswf_model_training_data\\data\\test'
image_size = 299
x_test = []
y_test = []
class_names = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']
for image_file in Path(test_dir).glob("**/*.jpg"):
# Load the current image file
image_data = image.load_img(image_file, target_size=(image_size, image_size))
# Convert the loaded image file to a numpy array
image_array = image.img_to_array(image_data)
image_array /= 255
# Add to list of test images
x_test.append(image_array)
# Now add answer derived from folder
path_name = os.path.dirname(image_file)
folder_name = os.path.basename(path_name)
y_test.append(class_names.index(folder_name))
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.get_cmap('Blues')):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
x_test = np.array(x_test)
predictions = model.predict(x_test)
y_pred = np.argmax(predictions, axis=1)
# Compute confusion matrix
cnf_matrix = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)
# Plot normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,
title='Normalized confusion matrix')
plt.show()