Skip to content

Commit

Permalink
+hw7 solution
Browse files Browse the repository at this point in the history
  • Loading branch information
hengxin committed Jun 5, 2021
1 parent 36872bf commit f0cd61e
Show file tree
Hide file tree
Showing 2 changed files with 103 additions and 1 deletion.
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
%%%%%%%%%%%%%%%%%%%%
\title{7. 集合: 函数与序关系 (7-function-ordering)}
\me{魏恒峰}{hfwei@nju.edu.cn}{}{}
\date{2021年04月22日 发布作业 \\ 2021年05月xx日 发布答案}
\date{2021年04月22日 发布作业 \\ 2021年06月05日 发布答案}
%%%%%%%%%%%%%%%%%%%%
\begin{document}
\maketitle
Expand Down Expand Up @@ -40,6 +40,34 @@
\end{problem}

\begin{proof}
\begin{enumerate}[(1)]
\item 对于任意 $b \in B$,
\begin{align}
&b \in f(A_{1} \cup A_{2}) \\
\iff & \exists a \in A_{1} \cup A_{2}.\; f(a) = b \\
\iff & (\exists a \in A_{1}.\; f(a) = b) \lor (\exists a \in A_{2}.\; f(a) = b) \\
\iff & b \in f(A_{1}) \lor b \in f(A_{2}) \\
\iff & b \in f(A_{1}) \cup f({A_{2}})
\end{align}
\item 对于任意 $a \in A$,
\setcounter{equation}{0}
\begin{align}
&a \in f^{-1}(B_{1} \setminus B_{2}) \\
\iff & f(a) \in B_{1} \setminus B_{2} \\
\iff & f(a) \in B_{1} \land f(a) \notin B_{2} \\
\iff & a \in f^{-1}(B_{1}) \land \lnot(a \in f^{-1}(B_{2})) \\
\iff & a \in f^{-1}(B_{1}) \land a \notin f^{-1}(B_{2}) \\
\iff & a \in f^{-1}(B_{1}) \setminus f^{-1}(B_{2})
\end{align}
\item 对于任意 $b \in B$,
\setcounter{equation}{0}
\begin{align}
&b \in f(f^{-1}(B_{0})) \\
\iff & \exists a \in f^{-1}(B_{0}).\; b = f(a) \\
\iff & \exists a \in A.\; f(a) \in B_{0} \land b = f(a) \\
\implies & b \in B_{0}
\end{align}
\end{enumerate}
\end{proof}
%%%%%%%%%%%%%%%

Expand All @@ -54,6 +82,36 @@
\end{problem}

\begin{proof}
\begin{enumerate}[(1)]
\item 任取 $c \in C$
由于 $g$ 是满射,
\[
\exists b \in B.\; g(b) = c.
\]
任取 $b_{0}$ 满足 $g(b_{0}) = c$
由于 $f$ 是满射,
\[
\exists a \in A.\; f(a) = b_{0}.
\]
任取 $a_{0}$ 满足 $f(a_{0}) = b_{0}$
则有
\[
(g \circ f)(a_{0}) = c.
\]
\item 任取 $a_{1}, a_{2} \in A$
假设 $f(a_{1}) = f(a_{2})$, 则
\[
g(f(a_{1})) = g(f(a_{2})),
\]
\[
(g \circ f)(a_{1}) = (g \circ f)(a_{2}).
\]
由于 $g \circ f$ 是单射,
\[
a_{1} = a_{2}.
\]
\end{enumerate}
\end{proof}
%%%%%%%%%%%%%%%

Expand All @@ -67,6 +125,11 @@
\end{problem}

\begin{proof}
首先, $f \circ g = I_{B}$ 是满射, 因此 $f$ 是满射。\\
其次, $g \circ f = I_{A}$ 是单射, 因此 $f$ 是单射。\\
所以, $f$ 是双射。\\
又由于 $f \circ g = I_{B}$, 因此 $g = f^{-1}$
\marginnote{该证明用到了课件中的两个定理, 请自行找出来。}
\end{proof}
%%%%%%%%%%%%%%%

Expand All @@ -92,6 +155,45 @@
\end{problem}

\begin{proof}
\begin{enumerate}[(1)]
\setcounter{enumi}{1}
\item 只需验证
\begin{description}
\item[$\le$ 是自反的:] 任取 $Y \in X/\sim$
$Y = [y]_{\sim}$。由于 $\preceq$ 是自反的,
\[
y \preceq y.
\]
根据 $\le$ 的定义,
\[
[y]_{\sim} \le [y]_{\sim}.
\]
\[
Y \le Y.
\]
\item[$\le$ 是反对称的:]
任取 $Y \in X/\sim$, $Z \in X/\sim$
$Y = [y]_{\sim}$, $Z = [z]_{\sim}$
\begin{align*}
&Y \le Z \land Z \le Y \\
\implies & y \preceq z \land z \preceq y \\
\implies & y \sim z \\
\implies & [y]_{\sim} = [z]_{\sim} \\
\implies & Y = Z.
\end{align*}
\item[$\le$ 是传递的:]
任取 $W\in X/\sim, Y \in X/\sim$, $Z \in X/\sim$
$W = [w]_{\sim}, Y = [y]_{\sim}$, $Z = [z]_{\sim}$
\begin{align*}
& W \le Y \land Y \le Z \\
\implies & w \preceq y \land y \preceq z \\
\implies & w \preceq z \\
\implies & [w]_{\sim} \le [z]_{\sim} \\
\implies & W \le Z.
\end{align*}
\end{description}
\end{enumerate}
\end{proof}
%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%
Expand Down

0 comments on commit f0cd61e

Please sign in to comment.