Skip to content

Commit a39fcd9

Browse files
committed
hw13-group-solution: +solutions to problems 3, 4, 5
1 parent 6acae2d commit a39fcd9

File tree

2 files changed

+44
-0
lines changed

2 files changed

+44
-0
lines changed
Binary file not shown.

2021/solution/hw13-group-solution/hw13-group-solution.tex

+44
Original file line numberDiff line numberDiff line change
@@ -82,6 +82,25 @@
8282
\end{problem}
8383

8484
\begin{proof}
85+
只需验证:
86+
\begin{description}
87+
\item[封闭性:] 显然 $a \oplus b \in \mathbb{Z}$
88+
\item[结合性:]
89+
\begin{align*}
90+
(a \oplus b) \oplus c &= (a + b - 2) \oplus c \\
91+
&= a + b - 2 + c - 2 \\
92+
&= a + (b + c - 2) - 2 \\
93+
&= a \oplus (b \oplus c)
94+
\end{align*}
95+
\item[单位元:] 单位元为 2。
96+
\[
97+
a \oplus 2 = a + 2 - 2 = a = 2 \oplus a.
98+
\]
99+
\item[逆元:] $a$ 的逆元是 $4-a$
100+
\[
101+
a \oplus (4 - a) = a + (4 - a) - 2 = 2 = (4 - a) \oplus a.
102+
\]
103+
\end{description}
85104
\end{proof}
86105
%%%%%%%%%%%%%%%
87106

@@ -93,6 +112,17 @@
93112
\end{problem}
94113

95114
\begin{proof}
115+
对于任意 $a, b \in G$,
116+
\begin{align*}
117+
a^{2} = e &\implies a = a^{-1}, \\
118+
b^{2} = e &\implies b = b^{-1}, \\
119+
(ab)^{2} = e &\implies ab = (ab)^{-1}.
120+
\end{align*}
121+
因此,
122+
\begin{align*}
123+
ab = (ab)^{-1} = b^{-1} a^{-1} = ba.
124+
\end{align*}
125+
因此, $G$ 是交换群。
96126
\end{proof}
97127
%%%%%%%%%%%%%%%
98128

@@ -102,6 +132,20 @@
102132
\end{problem}
103133

104134
\begin{proof}
135+
首先 $(3, 100) = 1$, $\phi(100) = \phi(2^2 5^2) = 100 (1 - \frac{1}{2})(1 - \frac{1}{5}) = 40$
136+
根据 Euler's Theorem,
137+
\[
138+
3^{40} = 1 \mod{100}.
139+
\]
140+
其次,
141+
\[
142+
3^{83} = 3^{2 \times 40 + 3} = (3^{40})^{2} \cdot 3^{3}.
143+
\]
144+
因此,
145+
\[
146+
3^{83} \mod{100} = 27 \mod{100}.
147+
\]
148+
$3^{83}$ 的最后两位数是 $27$
105149
\end{proof}
106150
%%%%%%%%%%%%%%%
107151

0 commit comments

Comments
 (0)