Skip to content

Commit

Permalink
hw13-group-solution: +solutions to problems 3, 4, 5
Browse files Browse the repository at this point in the history
  • Loading branch information
hengxin committed Jun 22, 2021
1 parent 6acae2d commit a39fcd9
Show file tree
Hide file tree
Showing 2 changed files with 44 additions and 0 deletions.
Binary file not shown.
44 changes: 44 additions & 0 deletions 2021/solution/hw13-group-solution/hw13-group-solution.tex
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,25 @@
\end{problem}

\begin{proof}
只需验证:
\begin{description}
\item[封闭性:] 显然 $a \oplus b \in \mathbb{Z}$
\item[结合性:]
\begin{align*}
(a \oplus b) \oplus c &= (a + b - 2) \oplus c \\
&= a + b - 2 + c - 2 \\
&= a + (b + c - 2) - 2 \\
&= a \oplus (b \oplus c)
\end{align*}
\item[单位元:] 单位元为 2。
\[
a \oplus 2 = a + 2 - 2 = a = 2 \oplus a.
\]
\item[逆元:] $a$ 的逆元是 $4-a$
\[
a \oplus (4 - a) = a + (4 - a) - 2 = 2 = (4 - a) \oplus a.
\]
\end{description}
\end{proof}
%%%%%%%%%%%%%%%

Expand All @@ -93,6 +112,17 @@
\end{problem}

\begin{proof}
对于任意 $a, b \in G$,
\begin{align*}
a^{2} = e &\implies a = a^{-1}, \\
b^{2} = e &\implies b = b^{-1}, \\
(ab)^{2} = e &\implies ab = (ab)^{-1}.
\end{align*}
因此,
\begin{align*}
ab = (ab)^{-1} = b^{-1} a^{-1} = ba.
\end{align*}
因此, $G$ 是交换群。
\end{proof}
%%%%%%%%%%%%%%%

Expand All @@ -102,6 +132,20 @@
\end{problem}

\begin{proof}
首先 $(3, 100) = 1$, $\phi(100) = \phi(2^2 5^2) = 100 (1 - \frac{1}{2})(1 - \frac{1}{5}) = 40$
根据 Euler's Theorem,
\[
3^{40} = 1 \mod{100}.
\]
其次,
\[
3^{83} = 3^{2 \times 40 + 3} = (3^{40})^{2} \cdot 3^{3}.
\]
因此,
\[
3^{83} \mod{100} = 27 \mod{100}.
\]
$3^{83}$ 的最后两位数是 $27$
\end{proof}
%%%%%%%%%%%%%%%

Expand Down

0 comments on commit a39fcd9

Please sign in to comment.