diff --git a/2021/problem-set/hw8-infinity/Schroder-Bernstein-theorem (wiki).pdf b/2021/problem-set/hw8-infinity/Schroder-Bernstein-theorem (wiki).pdf new file mode 100644 index 0000000..d33b420 Binary files /dev/null and b/2021/problem-set/hw8-infinity/Schroder-Bernstein-theorem (wiki).pdf differ diff --git a/2021/problem-set/hw8-infinity/hw8-infinity.pdf b/2021/problem-set/hw8-infinity/hw8-infinity.pdf index f6548fe..4924ddd 100644 Binary files a/2021/problem-set/hw8-infinity/hw8-infinity.pdf and b/2021/problem-set/hw8-infinity/hw8-infinity.pdf differ diff --git a/2021/problem-set/hw8-infinity/hw8-infinity.tex b/2021/problem-set/hw8-infinity/hw8-infinity.tex index 81a5e2b..5bec7cc 100644 --- a/2021/problem-set/hw8-infinity/hw8-infinity.tex +++ b/2021/problem-set/hw8-infinity/hw8-infinity.tex @@ -30,8 +30,9 @@ %%%%%%%%%%%%%%% %%%%%%%%%%%%%%% -\begin{problem}[\score{5} $\star\star\star$] - 请证明鸽笼原理。 +\begin{problem}[\score{3} $\star\star\star$] + 考虑由所有$0$, $1$串构成的集合 ($\set{0, 1, 111, 01010101010, 101010101, \dots}$)。 + 请问, 该集合是否是可数集合, 请给出理由。 \end{problem} \begin{proof} @@ -39,22 +40,12 @@ %%%%%%%%%%%%%%% %%%%%%%%%%%%%%% -\begin{problem}[\score{5} $\star\star\star$] - Is the set of all infinite sequences of $0$'s and $1$'s finite, - countably infinite, or uncountable? -\end{problem} +\begin{problem}[\score{4} $\star\star\star$] + 考虑如下命题: -\begin{proof} -\end{proof} -%%%%%%%%%%%%%%% + ``存在可数无穷多个两两不相交的非空集合, 它们的并是有穷集合。'' -%%%%%%%%%%%%%%% -\begin{problem}[\score{5} $\star\star\star$] - Give an example, if possible, of - \begin{enumerate}[(a)] - \item a countably infinite collection of \blue{\it pairwise disjoint} nonempty sets whose union is finite. - \item a countably infinite collection of nonempty sets whose union is finite. - \end{enumerate} + \noindent 请问, 该命题是否正确。如果正确, 请给出例子。如果不正确, 请给出(反面的)证明。 \end{problem} \begin{proof} @@ -62,17 +53,13 @@ %%%%%%%%%%%%%%% %%%%%%%%%%%%%%% -\begin{problem}[\score{5} $\star\star\star\star$] - \begin{theorem}[Cantor-Schr\"{o}der–Bernstein (1887)] - \[ - |X| \le |Y| \land |Y| \le |X| \implies |X| = |Y| - \] - \[ - \exists\; f: X \xrightarrow{1-1} Y \land g: Y \xrightarrow{1-1} X - \implies \exists\; h: X \xleftrightarrow[\text{onto}]{1-1} Y - \] - \end{theorem} +\begin{problem}[\score{3} $\star\star\star\star$] + 请自行查找并阅读 Cantor-Schr\"{o}der–Bernstein 定理的某个证明, + 理解它, 放下你手头的资料~\footnote{不要偷看哦}, 然后尝试自己写出这个证明~\footnote{ + 是不是又偷看了 (为什么明明懂了, 但就是表达不出来?)}。 + \vspace{1em} + \noindent 以下证明供参考~\footnote{pdf 版本见``\textsl{8-infinity.zip}''压缩包}: {\href{https://en.wikipedia.org/wiki/Schr\%C3\%B6der\%E2\%80\%93Bernstein\_theorem}{\teal{\footnotesize Schr\"{o}der–Bernstein theorem @ wiki}}} \end{problem} diff --git a/2021/zip/problems/hw8-infinity.zip b/2021/zip/problems/hw8-infinity.zip new file mode 100644 index 0000000..bd1e246 Binary files /dev/null and b/2021/zip/problems/hw8-infinity.zip differ