Skip to content

Latest commit

 

History

History

snapshots

State Sync Snapshotting

The snapshots package implements automatic support for CometBFT state sync in Cosmos SDK-based applications. State sync allows a new node joining a network to simply fetch a recent snapshot of the application state instead of fetching and applying all historical blocks. This can reduce the time needed to join the network by several orders of magnitude (e.g. weeks to minutes), but the node will not contain historical data from previous heights.

This document describes the Cosmos SDK implementation of the ABCI state sync interface, for more information on CometBFT state sync in general see:

Overview

For an overview of how Cosmos SDK state sync is set up and configured by developers and end-users, see the Cosmos SDK State Sync Guide.

Briefly, the Cosmos SDK takes state snapshots at regular height intervals given by state-sync.snapshot-interval and stores them as binary files in the filesystem under <node_home>/data/snapshots/, with metadata in a LevelDB database <node_home>/data/snapshots/metadata.db. The number of recent snapshots to keep are given by state-sync.snapshot-keep-recent.

Snapshots are taken asynchronously, i.e. new blocks will be applied concurrently with snapshots being taken. This is possible because IAVL supports querying immutable historical heights. However, this requires heights that are multiples of state-sync.snapshot-interval to be kept until after the snapshot is complete. It is done to prevent a height from being removed while it is being snapshotted.

When a remote node is state syncing, CometBFT calls the ABCI method ListSnapshots to list available local snapshots and LoadSnapshotChunk to load a binary snapshot chunk. When the local node is being state synced, CometBFT calls OfferSnapshot to offer a discovered remote snapshot to the local application and ApplySnapshotChunk to apply a binary snapshot chunk to the local application. See the resources linked above for more details on these methods and how CometBFT performs state sync.

The Cosmos SDK does not currently do any incremental verification of snapshots during restoration, i.e. only after the entire snapshot has been restored will CometBFT compare the app hash against the trusted hash from the chain. Cosmos SDK snapshots and chunks do contain hashes as checksums to guard against IO corruption and non-determinism, but these are not tied to the chain state and can be trivially forged by an adversary. This was considered out of scope for the initial implementation, but can be added later without changes to the ABCI state sync protocol.

Relationship to Pruning

Snapshot settings are optional. However, if set, they have an effect on how pruning is done by persisting the heights that are multiples of state-sync.snapshot-interval until after the snapshot is complete.

If pruning is enabled (not pruning = "nothing"), we avoid pruning heights that are multiples of state-sync.snapshot-interval in the regular logic determined by the pruning settings and applied after every Commit(). This is done to prevent a height from being removed before a snapshot is complete. Therefore, we keep such heights until after a snapshot is done. At this point, the height is sent to the pruning.Manager to be pruned according to the pruning settings after the next Commit().

To illustrate, assume that we are currently at height 960 with pruning-keep-recent = 50, pruning-interval = 10, and state-sync.snapshot-interval = 100. Let's assume that the snapshot that was triggered at height 900 just finishes. Then, we can prune height 900 right away (that is, when we call Commit() at height 960 because 900 is less than 960 - 50 = 910.

Let's now assume that all conditions stay the same but the snapshot at height 900 is not complete yet. Then, we cannot prune it to avoid deleting a height that is still being snapshotted. Therefore, we keep track of this height until the snapshot is complete. The height 900 will be pruned at the first height h that satisfied the following conditions:

  • the snapshot is complete
  • h is a multiple of pruning-interval
  • snapshot height is less than h - pruning-keep-recent

Note that in both examples, if we let current height = C, and previous height P = C - 1, then for every height h that is:

P - pruning-keep-recent - pruning-interval <= h <= P - pruning-keep-recent

we can prune height h. In our first example, all heights 899 - 909 fall in this range and are pruned at height 960 as long as h is not a snapshot height (E.g. 900).

That is, we always use current height to determine at which height to prune (960) while we use previous to determine which heights are to be pruned (959 - 50 - 10 = 899-909 = 959 - 50).

Configuration

  • state-sync.snapshot-interval

    • the interval at which to take snapshots.
    • the value of 0 disables snapshots.
    • if pruning is enabled, it is done after a snapshot is complete for the heights that are multiples of this interval.
  • state-sync.snapshot-keep-recent:

    • the number of recent snapshots to keep.
    • 0 means keep all.

Snapshot Metadata

The ABCI Protobuf type for a snapshot is listed below (refer to the ABCI spec for field details):

message Snapshot {
  uint64 height   = 1;  // The height at which the snapshot was taken
  uint32 format   = 2;  // The application-specific snapshot format
  uint32 chunks   = 3;  // Number of chunks in the snapshot
  bytes  hash     = 4;  // Arbitrary snapshot hash, equal only if identical
  bytes  metadata = 5;  // Arbitrary application metadata
}

Because the metadata field is application-specific, the Cosmos SDK uses a similar type cosmos.base.snapshots.v1beta1.Snapshot with its own metadata representation:

// Snapshot contains CometBFT state sync snapshot info.
message Snapshot {
  uint64   height   = 1;
  uint32   format   = 2;
  uint32   chunks   = 3;
  bytes    hash     = 4;
  Metadata metadata = 5 [(gogoproto.nullable) = false];
}

// Metadata contains SDK-specific snapshot metadata.
message Metadata {
  repeated bytes chunk_hashes = 1; // SHA-256 chunk hashes
}

The format is currently 1, defined in snapshots.types.CurrentFormat. This must be increased whenever the binary snapshot format changes, and it may be useful to support past formats in newer versions.

The hash is a SHA-256 hash of the entire binary snapshot, used to guard against IO corruption and non-determinism across nodes. Note that this is not tied to the chain state, and can be trivially forged (but CometBFT will always compare the final app hash against the chain app hash). Similarly, the chunk_hashes are SHA-256 checksums of each binary chunk.

The metadata field is Protobuf-serialized before it is placed into the ABCI snapshot.

Snapshot Format

The current version 1 snapshot format is a zlib-compressed, length-prefixed Protobuf stream of cosmos.base.store.v1beta1.SnapshotItem messages, split into chunks at exact 10 MB byte boundaries.

// SnapshotItem is an item contained in a rootmulti.Store snapshot.
message SnapshotItem {
  // item is the specific type of snapshot item.
  oneof item {
    SnapshotStoreItem store = 1;
    SnapshotIAVLItem  iavl  = 2 [(gogoproto.customname) = "IAVL"];
  }
}

// SnapshotStoreItem contains metadata about a snapshotted store.
message SnapshotStoreItem {
  string name = 1;
}

// SnapshotIAVLItem is an exported IAVL node.
message SnapshotIAVLItem {
  bytes key     = 1;
  bytes value   = 2;
  int64 version = 3;
  int32 height  = 4;
}

Snapshots are generated by rootmulti.Store.Snapshot() as follows:

  1. Set up a protoio.NewDelimitedWriter that writes length-prefixed serialized SnapshotItem Protobuf messages.
    1. Iterate over each IAVL store in lexicographical order by store name.
    2. Emit a SnapshotStoreItem containing the store name.
    3. Start an IAVL export for the store using iavl.ImmutableTree.Export().
    4. Iterate over each IAVL node.
    5. Emit a SnapshotIAVLItem for the IAVL node.
  2. Pass the serialized Protobuf output stream to a zlib compression writer.
  3. Split the zlib output stream into chunks at exactly every 10th megabyte.

Snapshots are restored via rootmulti.Store.Restore() as the inverse of the above, using iavl.MutableTree.Import() to reconstruct each IAVL tree.

Snapshot Storage

Snapshot storage is managed by snapshots.Store, with metadata in a db.DB database and binary chunks in the filesystem. Note that this is only used to store locally taken snapshots that are being offered to other nodes. When the local node is being state synced, CometBFT will take care of buffering and storing incoming snapshot chunks before they are applied to the application.

Metadata is generally stored in a LevelDB database at <node_home>/data/snapshots/metadata.db. It contains serialized cosmos.base.snapshots.v1beta1.Snapshot Protobuf messages with a key given by the concatenation of a key prefix, the big-endian height, and the big-endian format. Chunk data is stored as regular files under <node_home>/data/snapshots/<height>/<format>/<chunk>.

The snapshots.Store API is based on streaming IO, and integrates easily with the snapshots.types.Snapshotter snapshot/restore interface implemented by rootmulti.Store. The Store.Save() method stores a snapshot given as a <- chan io.ReadCloser channel of binary chunk streams, and Store.Load() loads the snapshot as a channel of binary chunk streams -- the same stream types used by Snapshotter.Snapshot() and Snapshotter.Restore() to take and restore snapshots using streaming IO.

The store also provides many other methods such as List() to list stored snapshots, LoadChunk() to load a single snapshot chunk, and Prune() to prune old snapshots.

Taking Snapshots

snapshots.Manager is a high-level snapshot manager that integrates a snapshots.types.Snapshotter (i.e. the rootmulti.Store snapshot functionality) and a snapshots.Store, providing an API that maps easily onto the ABCI state sync API. The Manager will also make sure only one operation is in progress at a time, e.g. to prevent multiple snapshots being taken concurrently.

During BaseApp.Commit, once a state transition has been committed, the height is checked against the state-sync.snapshot-interval setting. If the committed height should be snapshotted, a goroutine BaseApp.snapshot() is spawned that calls snapshots.Manager.Create() to create the snapshot. Once a snapshot is complete and if pruning is enabled, the snapshot height is pruned away by the manager with the call PruneSnapshotHeight(...) to the snapshots.types.Snapshotter.

Manager.Create() will do some basic pre-flight checks, and then start generating a snapshot by calling rootmulti.Store.Snapshot(). The chunk stream is passed into snapshots.Store.Save(), which stores the chunks in the filesystem and records the snapshot metadata in the snapshot database.

Once the snapshot has been generated, BaseApp.snapshot() then removes any old snapshots based on the state-sync.snapshot-keep-recent setting.

Serving Snapshots

When a remote node is discovering snapshots for state sync, CometBFT will call the ListSnapshots ABCI method to list the snapshots present on the local node. This is dispatched to snapshots.Manager.List(), which in turn dispatches to snapshots.Store.List().

When a remote node is fetching snapshot chunks during state sync, CometBFT will call the LoadSnapshotChunk ABCI method to fetch a chunk from the local node. This dispatches to snapshots.Manager.LoadChunk(), which in turn dispatches to snapshots.Store.LoadChunk().

Restoring Snapshots

When the operator has configured the local CometBFT node to run state sync (see the resources listed in the introduction for details on CometBFT state sync), it will discover snapshots across the P2P network and offer their metadata in turn to the local application via the OfferSnapshot ABCI call.

BaseApp.OfferSnapshot() attempts to start a restore operation by calling snapshots.Manager.Restore(). This may fail, e.g. if the snapshot format is unknown (it may have been generated by a different version of the Cosmos SDK), in which case CometBFT will offer other discovered snapshots.

If the snapshot is accepted, Manager.Restore() will record that a restore operation is in progress, and spawn a separate goroutine that runs a synchronous rootmulti.Store.Restore() snapshot restoration which will be fed snapshot chunks until it is complete.

CometBFT will then start fetching and buffering chunks, providing them in order via ABCI ApplySnapshotChunk calls. These dispatch to Manager.RestoreChunk(), which passes the chunks to the ongoing restore process, checking if errors have been encountered yet (e.g. due to checksum mismatches or invalid IAVL data). Once the final chunk is passed, Manager.RestoreChunk() will wait for the restore process to complete before returning.

Once the restore is completed, CometBFT will go on to call the Info ABCI call to fetch the app hash, and compare this against the trusted chain app hash at the snapshot height to verify the restored state. If it matches, CometBFT goes on to process blocks.