Skip to content

connorodea/AI_BLOGGER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 AI Blog Engine

License: MIT Python 3.8+ OpenAI Code style: black Monitoring: Prometheus

A production-ready AI-powered blog content engine with advanced SEO optimization, content research, and automated publishing capabilities. Generate, optimize, and manage high-quality blog content at scale.

AI Blog Engine Architecture

✨ Features

Content Generation & Optimization

  • 🤖 Advanced AI-powered content generation using OpenAI GPT models
  • 📊 Intelligent topic research and content planning
  • 🎯 SEO optimization with keyword analysis
  • 📝 Automated content enhancement and fact-checking
  • 🔄 Content versioning and revision history

Production-Ready Infrastructure

  • ☁️ Cloud storage integration (Google Cloud Storage)
  • 📈 Prometheus monitoring and metrics
  • 🚨 Alert management system
  • 🔒 Security best practices
  • 🔄 Automatic retries and error handling

Analytics & Performance

  • 📊 Real-time content performance tracking
  • 📈 SEO metrics and rankings
  • 👥 Audience engagement analytics
  • 💹 Revenue tracking
  • 🎯 A/B testing capabilities

🚀 Quick Start

Prerequisites

  • Python 3.8+
  • Google Cloud account (for storage)
  • OpenAI API key

Installation

# Clone the repository
git clone https://github.com/yourusername/ai-blog-engine.git
cd ai-blog-engine

# Run setup script
chmod +x setup_blog_engine.sh
./setup_blog_engine.sh

Basic Usage

from blog_engine import BlogOrchestrator

# Initialize the engine
orchestrator = BlogOrchestrator("config.yaml")

# Generate a blog post
result = await orchestrator.create_blog_post(
    topic="AI Technology Trends",
    keywords=["artificial intelligence", "machine learning", "AI trends"]
)

# View the result
print(f"Blog post created: {result['public_url']}")

📊 Example Output

Content Generation

title: "10 Groundbreaking AI Trends Reshaping Technology in 2024"
metrics:
  seo_score: 0.92
  readability_score: 0.88
  engagement_score: 0.95
enhancements:
  examples: 3
  statistics: 5
  expert_quotes: 2
analytics:
  estimated_reach: 15000
  seo_ranking: "High"

Performance Monitoring

{
  "content_quality": {
    "grammar_score": 0.98,
    "originality_score": 0.95,
    "engagement_metrics": {
      "avg_time_on_page": "4:32",
      "bounce_rate": "15%"
    }
  }
}

🏗️ Architecture

The AI Blog Engine is built with a modular, microservices-based architecture:

ai-blog-engine/
├── blog_engine/          # Core package
│   ├── orchestrator.py   # Main workflow orchestrator
│   ├── research/        # Topic research and planning
│   ├── generation/      # Content generation
│   ├── optimization/    # Content optimization
│   └── monitoring/      # System monitoring
├── frontend/            # Web dashboard
├── tests/              # Test suite
└── utils/              # Utility scripts

🔧 Configuration

Example configuration file (config.yaml):

services:
  openai:
    enabled: true
    api_key: "your-key"
    model: "gpt-4"
  
storage:
  type: "gcloud"
  bucket_name: "your-bucket"

monitoring:
  enabled: true
  prometheus_port: 8000
  alert_thresholds:
    error_rate: 0.01
    memory_mb: 1000

📈 Monitoring & Analytics

The engine includes comprehensive monitoring:

  • Real-time metrics via Prometheus
  • Performance dashboards
  • Error tracking and alerting
  • Resource usage monitoring
  • Content performance analytics

🔒 Security

  • Secure credential management
  • API key rotation
  • Rate limiting
  • Access control
  • Audit logging

🧪 Testing

# Run test suite
pytest

# Run specific tests
pytest tests/integration/test_content_generation.py

📚 Documentation

Full documentation is available in the /docs directory:

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

  1. Fork the repository
  2. Create your feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🌟 Acknowledgments

  • OpenAI for their powerful API
  • Google Cloud for storage solutions
  • The open-source community

💬 Support


Made with ❤️ by the AI Blog Engine Team

About

No description or website provided.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published