-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathtest_compare.py
executable file
·125 lines (93 loc) · 3.3 KB
/
test_compare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python3
import pytest
import os
import sys
import sympy as sp
import numpy as np
if __name__ == '__main__': # generating sympy code
from rednose.helpers.ekf_sym import gen_code
else:
from rednose.helpers.ekf_sym_pyx import EKF_sym_pyx # pylint: disable=no-name-in-module
from rednose.helpers.ekf_sym import EKF_sym as EKF_sym2
GENERATED_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), 'generated'))
class ObservationKind:
UNKNOWN = 0
NO_OBSERVATION = 1
POSITION = 1
names = [
'Unknown',
'No observation',
'Position'
]
@classmethod
def to_string(cls, kind):
return cls.names[kind]
class States:
POSITION = slice(0, 1)
VELOCITY = slice(1, 2)
class CompareFilter:
name = "compare"
initial_x = np.array([0.5, 0.0])
initial_P_diag = np.array([1.0**2, 1.0**2])
Q = np.diag([0.1**2, 2.0**2])
obs_noise = {ObservationKind.POSITION: np.atleast_2d(0.1**2)}
@staticmethod
def generate_code(generated_dir):
name = CompareFilter.name
dim_state = CompareFilter.initial_x.shape[0]
state_sym = sp.MatrixSymbol('state', dim_state, 1)
state = sp.Matrix(state_sym)
position = state[States.POSITION, :][0,:]
velocity = state[States.VELOCITY, :][0,:]
dt = sp.Symbol('dt')
state_dot = sp.Matrix(np.zeros((dim_state, 1)))
state_dot[States.POSITION.start, 0] = velocity
f_sym = state + dt * state_dot
obs_eqs = [
[sp.Matrix([position]), ObservationKind.POSITION, None],
]
gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state)
def __init__(self, generated_dir):
dim_state = self.initial_x.shape[0]
dim_state_err = self.initial_P_diag.shape[0]
# init filter
self.filter_py = EKF_sym_pyx(generated_dir, self.name, self.Q, self.initial_x, np.diag(self.initial_P_diag), dim_state, dim_state_err)
self.filter_pyx = EKF_sym2(generated_dir, self.name, self.Q, self.initial_x, np.diag(self.initial_P_diag), dim_state, dim_state_err)
def get_R(self, kind, n):
obs_noise = self.obs_noise[kind]
dim = obs_noise.shape[0]
R = np.zeros((n, dim, dim))
for i in range(n):
R[i, :, :] = obs_noise
return R
class TestCompare:
def test_compare(self):
np.random.seed(0)
kf = CompareFilter(GENERATED_DIR)
# Simple simulation
dt = 0.01
ts = np.arange(0, 5, step=dt)
xs = np.empty(ts.shape)
# Simulate
x = 0.0
for i, v in enumerate(np.sin(ts * 5)):
xs[i] = x
x += v * dt
# insert late observation
switch = (20, 40)
ts[switch[0]], ts[switch[1]] = ts[switch[1]], ts[switch[0]]
xs[switch[0]], xs[switch[1]] = xs[switch[1]], xs[switch[0]]
for t, x in zip(ts, xs):
# get measurement
meas = np.random.normal(x, 0.1)
z = np.array([[meas]])
R = kf.get_R(ObservationKind.POSITION, 1)
# Update kf
kf.filter_py.predict_and_update_batch(t, ObservationKind.POSITION, z, R)
kf.filter_pyx.predict_and_update_batch(t, ObservationKind.POSITION, z, R)
assert kf.filter_py.get_filter_time() == pytest.approx(kf.filter_pyx.get_filter_time())
assert np.allclose(kf.filter_py.state(), kf.filter_pyx.state())
assert np.allclose(kf.filter_py.covs(), kf.filter_pyx.covs())
if __name__ == "__main__":
generated_dir = sys.argv[2]
CompareFilter.generate_code(generated_dir)