@@ -134,18 +134,18 @@ def INPUT_TYPES(s):
134134 return {"required" : {"positive" : ("CONDITIONING" , ),
135135 "negative" : ("CONDITIONING" , ),
136136 "latent" : ("LATENT" , ),
137+ "noise_augmentation" : ("FLOAT" , {"default" : 0.10 , "min" : 0.0 , "max" : 1.0 , "step" : 0.01 }),
137138 }}
138139
139140 RETURN_TYPES = ("CONDITIONING" , "CONDITIONING" , "LATENT" )
140141 RETURN_NAMES = ("positive" , "negative" , "latent" )
141142
142143 FUNCTION = "execute"
143144
144- def execute (self , positive , negative , latent ):
145+ def execute (self , positive , negative , latent , noise_augmentation ):
145146 latent = latent ["samples" ]
146-
147- positive = node_helpers .conditioning_set_values (positive , {"concat_latent_image" : latent })
148- negative = node_helpers .conditioning_set_values (negative , {"concat_latent_image" : latent })
147+ positive = node_helpers .conditioning_set_values (positive , {"concat_latent_image" : latent , "noise_augmentation" : noise_augmentation })
148+ negative = node_helpers .conditioning_set_values (negative , {"concat_latent_image" : latent , "noise_augmentation" : noise_augmentation })
149149 out_latent = {}
150150 out_latent ["samples" ] = torch .zeros ([latent .shape [0 ], 32 , latent .shape [- 3 ], latent .shape [- 2 ], latent .shape [- 1 ]], device = comfy .model_management .intermediate_device ())
151151 return (positive , negative , out_latent )
0 commit comments