Skip to content

엣지 컴퓨팅과 인공지능을 이용한 공유 킥보드 인도주행 경고 시스템 (Edge AI applied sidewalk warning system for public scooter)

Notifications You must be signed in to change notification settings

colibrishin/sopoware-panoptes

Repository files navigation

sopoware-panoptes

Team Sopoware

Yeong-chul Park, Beomsik Shin, Jewoong Yoon
Dept of Computer Engineering, Daejeon University

What is this?

This repository is dedicated to our project, 'Edge AI applied sidewalk warning system for public scooter', includes scripts for training a deep learning model and deploying and running it in Jetson Nano. the project is aimed to prevent a shared kickboard driving on a sidewalk by alerting a driver and using the semantic segmentation to determine if the shared kickboard is on the sidewalk.

Requirements

Hardware

  • Nvidia Jetson Nano
  • CSI Camera
  • Buzzer
  • Bluetooth Module
  • microSD (64GB Recommended)

Documentation

Installation

Clone this repository

git clone https://github.com/colibrishin/sopoware-panoptes.git

Place the converted TensorRT engine into the trt/

cp [converted TensorRT engine] [cloned repository directory]/trt/data/trt_model.engine

If image will be running in debug mode, label of Dataset and palette color code is required. Check Labelme To VOC for more detail.

cp [Dataset label] [cloned repository directory]/trt/data/labels.txt
cp [Color code npy] [cloned repository directory]/trt/data/color_codes.npy

Build the image (On default, image will be built as debug mode.)

chmod +x build.sh
sh build.sh

Start the container

sudo docker run --ipc host --privileged --rm -it -d \
                --runtime nvidia --net=host -v /tmp/argus_socket:/tmp/argus_socket \
                -v /sys:/sys -v /dev/bus/usb:/dev/bus/usb -v /var/run/dbus:/var/run/dbus \
                -v /var/lib/bluetooth:/var/lib/bluetooth \
                --device /dev/gpiochip0:/dev/gpiochip0 --device /dev/gpiochip1:/dev/gpiochip1 \
                --cap-add=SYS_ADMIN --group-add $(cut -d: -f3 < <(getent group gpio)) \
                sopoware-panoptes

If it's working correctly and built as debug mode, you can monitor the model prediction by accessing the device IP address on port 80.

Demo

Panoptes Test

Cite

Labelme :

@misc{labelme2016,
   author =       {Kentaro Wada},
   title =        {{labelme: Image Polygonal Annotation with Python}},
   howpublished = {\url{https://github.com/wkentaro/labelme}},
   year =         {2016}
}

MobileNetV3 :

A. Howard, M. Sandler, G. Chu, L. Chen, Bo Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Quoc V. Le, H. Ada, "Searching for MobileNetV3," arXiv:1905.02244 [cs.CV]

About

엣지 컴퓨팅과 인공지능을 이용한 공유 킥보드 인도주행 경고 시스템 (Edge AI applied sidewalk warning system for public scooter)

Topics

Resources

Stars

Watchers

Forks