Skip to content

Commit 222ea11

Browse files
Update README.md
1 parent f9ad8c9 commit 222ea11

File tree

1 file changed

+163
-1
lines changed

1 file changed

+163
-1
lines changed

README.md

Lines changed: 163 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,164 @@
1-
# DocGPT
1+
# DocGPT (Doctor GPT) - AI-Powered Medical Diagnosis System
2+
3+
DocGPT (Doctor GPT) is an advanced medical diagnosis system that combines Vision Transformer (ViT) based deep learning models with LangChain agents to provide comprehensive medical image analysis and detailed diagnostic reports. The system leverages the power of PyTorch for deep learning and Groq's LLM for generating human-like medical insights.
4+
5+
## Core Technology
6+
7+
- **LangChain Agents**: Intelligent agents that coordinate between different disease detection models and the LLM to provide comprehensive medical analysis
8+
- **Vision Transformer (ViT)**: State-of-the-art transformer architecture for medical image analysis
9+
- **Deep Learning Models**: Specialized PyTorch models trained for different medical conditions:
10+
- ResNet-based architecture for Eye Disease detection
11+
- Vision Transformer for Skin Cancer classification
12+
- Custom CNN architecture for Pneumonia detection
13+
14+
## Features
15+
16+
- **Multi-Disease Detection**: Supports multiple medical conditions:
17+
- Eye Diseases (Cataract, Glaucoma, Diabetic Retinopathy)
18+
- Skin Cancer (Melanoma Detection)
19+
- Pneumonia (X-ray Analysis)
20+
- Brain Tumor (Coming Soon)
21+
- Heart Disease (Coming Soon)
22+
23+
- **AI-Powered Analysis**:
24+
- Deep learning models for accurate disease detection
25+
- Groq LLM integration for detailed medical reports
26+
- LangChain agents for orchestrating the analysis pipeline
27+
28+
- **Modern Architecture**:
29+
- FastAPI backend with automatic OpenAPI documentation
30+
- Streamlit frontend for testing (React.js interface planned)
31+
- Modular design for easy extension to new disease types
32+
33+
## Tech Stack
34+
35+
- **Backend Framework**: FastAPI
36+
- **Deep Learning**:
37+
- PyTorch
38+
- torchvision
39+
- Vision Transformer (ViT)
40+
- **AI Integration**:
41+
- LangChain for agent orchestration
42+
- Groq API for medical report generation
43+
- **Image Processing**:
44+
- PIL
45+
- torchvision transforms
46+
- **Development**:
47+
- Python 3.12+
48+
- pydantic for data validation
49+
- uvicorn for ASGI server
50+
51+
## Installation
52+
53+
1. Clone the repository:
54+
```bash
55+
git clone https://github.com/codewithdark-git/DocGPT.git
56+
cd DocGPT
57+
```
58+
59+
2. Create and activate a virtual environment:
60+
```bash
61+
python -m venv venv
62+
source venv/bin/activate # Linux/Mac
63+
# OR
64+
venv\Scripts\activate # Windows
65+
```
66+
67+
3. Install dependencies:
68+
```bash
69+
pip install -r requirements.txt
70+
```
71+
72+
4. Set up environment variables in `.env`:
73+
```env
74+
GROQ_API_KEY=your_groq_api_key
75+
GROQ_MODEL_NAME=llama-3.2-11b-vision-preview
76+
```
77+
78+
## Usage
79+
80+
1. Start the FastAPI backend:
81+
```bash
82+
uvicorn app.main:app --reload
83+
```
84+
85+
2. Start the Streamlit frontend (in a new terminal):
86+
```bash
87+
streamlit run streamlit_app.py
88+
```
89+
90+
3. Access the applications:
91+
- API Documentation: http://localhost:8000/docs
92+
- Streamlit Interface: http://localhost:8501
93+
94+
## API Endpoints
95+
96+
### Health Check
97+
- `GET /api/v1/health`: Check API health status
98+
99+
### Disease Prediction
100+
- `POST /api/v1/predict`: Submit an image for disease prediction
101+
- Parameters:
102+
- `disease_type`: Type of disease to predict
103+
- `file`: Image file
104+
105+
## Model Testing
106+
107+
Test individual models using the provided test scripts:
108+
109+
```bash
110+
# Test Eye Disease Model
111+
python test_eye.py path/to/eye/image.jpg
112+
```
113+
114+
## Project Structure
115+
116+
```
117+
DocGPT/
118+
├── app/
119+
│ ├── main.py # FastAPI application
120+
│ ├── config.py # Configuration settings
121+
│ ├── routers/ # API routes
122+
│ ├── schemas/ # Pydantic models
123+
│ └── services/ # ML models and business logic
124+
├── models/ # Trained model files
125+
├── streamlit_app.py # Streamlit frontend
126+
├── requirements.txt # Project dependencies
127+
└── .env # Environment variables
128+
```
129+
130+
## Disease Types
131+
132+
- **Eye Disease Detection**:
133+
- Normal
134+
- Cataract
135+
- Glaucoma
136+
- Diabetic Retinopathy
137+
138+
- **Skin Cancer Detection**:
139+
- Melanoma
140+
- Non-Melanoma
141+
142+
- **Pneumonia Detection**:
143+
- Normal
144+
- Pneumonia
145+
146+
## Contributing
147+
148+
1. Fork the repository
149+
2. Create a feature branch
150+
3. Commit your changes
151+
4. Push to the branch
152+
5. Create a Pull Request
153+
154+
## License
155+
156+
This project is licensed under the MIT License - see the LICENSE file for details.
157+
158+
## Acknowledgments
159+
160+
- Medical datasets providers
161+
- PyTorch team
162+
- Groq API team
163+
- FastAPI and Streamlit communities
2164

0 commit comments

Comments
 (0)