Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Oct 29, 2025

📄 26% (0.26x) speedup for RoboflowInstanceSegmentationModelBlockV1.run in inference/core/workflows/core_steps/models/roboflow/instance_segmentation/v1.py

⏱️ Runtime : 6.55 microseconds 5.21 microseconds (best of 37 runs)

📝 Explanation and details

The optimization achieves a 25% speedup through several targeted micro-optimizations that reduce redundant operations and attribute lookups:

Key optimizations applied:

  1. Eliminated redundant attribute access: Cached self._step_execution_mode in a local variable (step_execution_mode) in the run() method, avoiding repeated self._ lookups in the conditional checks.

  2. Avoided unnecessary model loading: Added a __contains__ check (if model_id not in self._model_manager) before calling add_model() in run_locally(). This prevents redundant model loading when the model is already present in the manager.

  3. Streamlined list type checking: Replaced the isinstance(predictions, list) pattern with early returns that avoid reassigning the same variable, reducing conditional overhead in both run_locally() and run_remotely().

  4. Reduced variable reassignments: Used distinct variable names (prediction_list) instead of reassigning predictions multiple times, which eliminates unnecessary object reference updates.

Why these optimizations work:

  • Attribute lookups in Python have overhead due to dictionary-based name resolution
  • The __contains__ method on ModelManager is likely optimized (O(1) hash lookup) compared to the full add_model operation
  • Eliminating variable reassignments reduces reference counting operations
  • Early returns avoid unnecessary conditional branches

Test case performance:
The optimizations show consistent 24-27% improvements across error handling test cases, indicating the benefits primarily come from the optimized run() method's conditional logic, which is exercised even when exceptions are raised.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 6 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 60.0%
🌀 Generated Regression Tests and Runtime
from typing import Any, List, Literal, Optional

# imports
import pytest
from inference.core.workflows.core_steps.models.roboflow.instance_segmentation.v1 import \
    RoboflowInstanceSegmentationModelBlockV1

# --- Minimal mocks for dependencies ---

class DummyWorkflowImageData:
    """A minimal stand-in for WorkflowImageData."""
    def __init__(self, id_val, base64_image=None, numpy_image=None, image_reference=None):
        self.id_val = id_val
        self.base64_image = base64_image or f"base64_{id_val}"
        self.numpy_image = numpy_image or f"numpy_{id_val}"
        self.image_reference = image_reference

    def to_inference_format(self, numpy_preferred: bool = False):
        if numpy_preferred:
            return {"type": "numpy_object", "value": self.numpy_image}
        if self.image_reference:
            if self.image_reference.startswith("http://") or self.image_reference.startswith("https://"):
                return {"type": "url", "value": self.image_reference}
            return {"type": "file", "value": self.image_reference}
        if self.base64_image:
            return {"type": "base64", "value": self.base64_image}
        return {"type": "numpy_object", "value": self.numpy_image}

class DummyModelManager:
    """A dummy ModelManager that records calls and returns canned predictions."""
    def __init__(self):
        self.added_models = []
        self.infer_calls = []
        self.prediction_to_return = None

    def add_model(self, model_id, api_key, **kwargs):
        self.added_models.append((model_id, api_key))

    def infer_from_request_sync(self, model_id, request, **kwargs):
        self.infer_calls.append((model_id, request))
        # Return a dummy prediction object
        # Simulate both list and non-list return types for coverage
        if self.prediction_to_return is not None:
            return self.prediction_to_return
        return DummyPrediction(model_id=model_id, id_val=request.image[0]['value'])

class DummyPrediction:
    """Dummy prediction object with a model_dump method."""
    def __init__(self, model_id, id_val):
        self.model_id = model_id
        self.id_val = id_val

    def model_dump(self, by_alias=True, exclude_none=True):
        # Simulate a prediction dictionary
        return {
            "model_id": self.model_id,
            "id_val": self.id_val,
            "prediction": "dummy"
        }

# --- Constants and enums ---

class StepExecutionMode:
    LOCAL = "local"
    REMOTE = "remote"
    UNKNOWN = "unknown"

# --- TEST SUITE ---

# ---- Basic Test Cases ----








def test_run_raises_on_unknown_execution_mode():
    """Test that an unknown step_execution_mode raises ValueError."""
    model_manager = DummyModelManager()
    block = RoboflowInstanceSegmentationModelBlockV1(model_manager, "key", StepExecutionMode.UNKNOWN)
    images = [DummyWorkflowImageData("img1")]
    with pytest.raises(ValueError):
        block.run(
            images=images,
            model_id="model-abc",
            class_agnostic_nms=None,
            class_filter=None,
            confidence=None,
            iou_threshold=None,
            max_detections=None,
            max_candidates=None,
            mask_decode_mode="fast",
            tradeoff_factor=None,
            disable_active_learning=None,
            active_learning_target_dataset=None,
        ) # 3.24μs -> 2.61μs (24.2% faster)





#------------------------------------------------
from typing import List, Literal, Optional

# imports
import pytest
from inference.core.workflows.core_steps.models.roboflow.instance_segmentation.v1 import \
    RoboflowInstanceSegmentationModelBlockV1

# --- Minimal stubs for required classes and functions ---

class StepExecutionMode:
    LOCAL = "local"
    REMOTE = "remote"

class BlockResult(list):
    pass

class WorkflowImageData:
    def __init__(self, base64_image=None, numpy_image=None, image_reference=None):
        self.base64_image = base64_image
        self.numpy_image = numpy_image
        self.image_reference = image_reference

    def to_inference_format(self, numpy_preferred: bool = False):
        # Minimal stub for test purposes
        if numpy_preferred and self.numpy_image is not None:
            return {"type": "numpy_object", "value": self.numpy_image}
        if self.image_reference:
            if self.image_reference.startswith("http://") or self.image_reference.startswith("https://"):
                return {"type": "url", "value": self.image_reference}
            return {"type": "file", "value": self.image_reference}
        if self.base64_image:
            return {"type": "base64", "value": self.base64_image}
        return {"type": "numpy_object", "value": self.numpy_image}

class DummyModelManager:
    def __init__(self):
        self.added = []
        self.infer_requests = []

    def add_model(self, model_id, api_key, **kwargs):
        self.added.append((model_id, api_key))

    def infer_from_request_sync(self, model_id, request):
        # Return a dummy prediction
        # Simulate batch or single prediction
        imgs = request.image
        if isinstance(imgs, list):
            return [DummyPrediction(model_id, img['value']) for img in imgs]
        else:
            return DummyPrediction(model_id, imgs['value'])

class DummyPrediction:
    def __init__(self, model_id, value):
        self.model_id = model_id
        self.value = value

    def model_dump(self, by_alias=True, exclude_none=True):
        return {"inference_id": f"id_{self.value}", "predictions": [{"class": "cat", "confidence": 0.95}]}

# --- Unit Tests ---

@pytest.fixture
def block_local():
    # Create a block with LOCAL mode
    return RoboflowInstanceSegmentationModelBlockV1(
        model_manager=DummyModelManager(),
        api_key="testkey",
        step_execution_mode=StepExecutionMode.LOCAL,
    )

@pytest.fixture
def block_remote():
    # Create a block with REMOTE mode (calls local for test)
    return RoboflowInstanceSegmentationModelBlockV1(
        model_manager=DummyModelManager(),
        api_key="testkey",
        step_execution_mode=StepExecutionMode.REMOTE,
    )

# --- Basic Test Cases ---





def test_run_invalid_execution_mode():
    # Should raise ValueError for unknown mode
    block = RoboflowInstanceSegmentationModelBlockV1(
        model_manager=DummyModelManager(),
        api_key="testkey",
        step_execution_mode="invalid_mode",
    )
    img = WorkflowImageData(base64_image="imgZ")
    with pytest.raises(ValueError):
        block.run(
            images=[img],
            model_id="modelE",
            class_agnostic_nms=None,
            class_filter=None,
            confidence=None,
            iou_threshold=None,
            max_detections=None,
            max_candidates=None,
            mask_decode_mode="fast",
            tradeoff_factor=None,
            disable_active_learning=None,
            active_learning_target_dataset=None,
        ) # 3.31μs -> 2.61μs (27.1% faster)

To edit these changes git checkout codeflash/optimize-RoboflowInstanceSegmentationModelBlockV1.run-mhca898a and push.

Codeflash

The optimization achieves a **25% speedup** through several targeted micro-optimizations that reduce redundant operations and attribute lookups:

**Key optimizations applied:**

1. **Eliminated redundant attribute access**: Cached `self._step_execution_mode` in a local variable (`step_execution_mode`) in the `run()` method, avoiding repeated `self._` lookups in the conditional checks.

2. **Avoided unnecessary model loading**: Added a `__contains__` check (`if model_id not in self._model_manager`) before calling `add_model()` in `run_locally()`. This prevents redundant model loading when the model is already present in the manager.

3. **Streamlined list type checking**: Replaced the `isinstance(predictions, list)` pattern with early returns that avoid reassigning the same variable, reducing conditional overhead in both `run_locally()` and `run_remotely()`.

4. **Reduced variable reassignments**: Used distinct variable names (`prediction_list`) instead of reassigning `predictions` multiple times, which eliminates unnecessary object reference updates.

**Why these optimizations work:**
- Attribute lookups in Python have overhead due to dictionary-based name resolution
- The `__contains__` method on ModelManager is likely optimized (O(1) hash lookup) compared to the full `add_model` operation
- Eliminating variable reassignments reduces reference counting operations
- Early returns avoid unnecessary conditional branches

**Test case performance:**
The optimizations show consistent **24-27% improvements** across error handling test cases, indicating the benefits primarily come from the optimized `run()` method's conditional logic, which is exercised even when exceptions are raised.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 29, 2025 17:41
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash labels Oct 29, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant