|
48 | 48 | - [游戏](#游戏)
|
49 | 49 | - [播客](#播客)
|
50 | 50 | - [社区](#社区)
|
| 51 | +- [相关会议](#相关会议) |
51 | 52 | - [面试问题](#面试问题)
|
52 | 53 | - [我崇拜的公司](#我崇拜的公司)
|
53 | 54 |
|
|
150 | 151 | - [ ] [Part 4: 现代人脸识别与深度学习](https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78#.3rwmq0ddc)
|
151 | 152 | - [ ] [Part 5: 翻译与深度学习和序列的魔力](https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa#.wyfthap4c)
|
152 | 153 | - [ ] [Part 6: 如何使用深度学习进行语音识别](https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-with-deep-learning-28293c162f7a#.lhr1nnpcy)
|
| 154 | +- [ ] [Part 7: 使用生成式对抗网络创造 8 像素艺术](https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7) |
153 | 155 |
|
154 | 156 | ## [机器学习简介](https://triskell.github.io/2016/11/15/Inky-Machine-Learning.html)(用手指沾上墨水来书写机器学习简介)
|
155 | 157 | - [ ] [Part 1 : 什么是机器学习?](https://triskell.github.io/2016/10/23/What-is-Machine-Learning.html)
|
|
186 | 188 | - [收集的最简化、可执行的机器学习算法](https://github.com/rushter/MLAlgorithms)
|
187 | 189 |
|
188 | 190 | ## 入门书籍
|
189 |
| -- [ ] [Data Smart: Using Data Science to Transform Information into Insight 1st Edition](https://www.amazon.com/Data-Smart-Science-Transform-Information/dp/111866146X) |
190 |
| -- [ ] [Data Science for Business: What you need to know about data mining and data analytic-thinking](https://www.amazon.com/Data-Science-Business-Data-Analytic-Thinking/dp/1449361323/) |
191 |
| -- [ ] [Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die](https://www.amazon.com/Predictive-Analytics-Power-Predict-Click/dp/1118356853) |
| 191 | +- [ ] [《Data Smart: Using Data Science to Transform Information into Insight》第 1 版](https://www.amazon.com/Data-Smart-Science-Transform-Information/dp/111866146X) |
| 192 | +- [ ] [《Data Science for Business: What you need to know about data mining and data analytic-thinking》](https://www.amazon.com/Data-Science-Business-Data-Analytic-Thinking/dp/1449361323/) |
| 193 | +- [ ] [《Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die》](https://www.amazon.com/Predictive-Analytics-Power-Predict-Click/dp/1118356853) |
192 | 194 |
|
193 | 195 | ## 实用书籍
|
194 |
| -- [ ] [Machine Learning for Hackers](https://www.amazon.com/Machine-Learning-Hackers-Drew-Conway/dp/1449303714) |
| 196 | +- [ ] [Hacker 的机器学习](https://www.amazon.com/Machine-Learning-Hackers-Drew-Conway/dp/1449303714) |
195 | 197 | - [GitHub repository(R)](https://github.com/johnmyleswhite/ML_for_Hackers)
|
196 | 198 | - [GitHub repository(Python)](https://github.com/carljv/Will_it_Python)
|
197 |
| -- [ ] [Python Machine Learning](https://www.amazon.com/Python-Machine-Learning-Sebastian-Raschka-ebook/dp/B00YSILNL0) |
| 199 | +- [ ] [Python 机器学习](https://www.amazon.com/Python-Machine-Learning-Sebastian-Raschka-ebook/dp/B00YSILNL0) |
198 | 200 | - [GitHub repository](https://github.com/rasbt/python-machine-learning-book)
|
199 |
| -- [ ] [Programming Collective Intelligence: Building Smart Web 2.0 Applications](https://www.amazon.com/Programming-Collective-Intelligence-Building-Applications-ebook/dp/B00F8QDZWG) |
200 |
| -- [ ] [Machine Learning: An Algorithmic Perspective, Second Edition](https://www.amazon.com/Machine-Learning-Algorithmic-Perspective-Recognition/dp/1466583282) |
| 201 | +- [ ] [集体智慧编程: 创建智能 Web 2.0 应用](https://www.amazon.com/Programming-Collective-Intelligence-Building-Applications-ebook/dp/B00F8QDZWG) |
| 202 | +- [ ] [机器学习: 算法视角,第二版](https://www.amazon.com/Machine-Learning-Algorithmic-Perspective-Recognition/dp/1466583282) |
201 | 203 | - [GitHub repository](https://github.com/alexsosn/MarslandMLAlgo)
|
202 | 204 | - [Resource repository](http://seat.massey.ac.nz/personal/s.r.marsland/MLbook.html)
|
203 |
| -- [ ] [Introduction to Machine Learning with Python: A Guide for Data Scientists](http://shop.oreilly.com/product/0636920030515.do) |
| 205 | +- [ ] [Python 机器学习简介: 数据科学家指南](http://shop.oreilly.com/product/0636920030515.do) |
204 | 206 | - [GitHub repository](https://github.com/amueller/introduction_to_ml_with_python)
|
205 |
| -- [ ] [Data Mining: Practical Machine Learning Tools and Techniques, Third Edition](https://www.amazon.com/Data-Mining-Practical-Techniques-Management/dp/0123748569) |
| 207 | +- [ ] [数据挖掘: 机器学习工具与技术实践,第 3 版](https://www.amazon.com/Data-Mining-Practical-Techniques-Management/dp/0123748569) |
206 | 208 | - Teaching material
|
207 |
| - - [Slides for Chapters 1-5 (zip)](http://www.cs.waikato.ac.nz/ml/weka/Slides3rdEd_Ch1-5.zip) |
208 |
| - - [Slides for Chapters 6-8 (zip)](http://www.cs.waikato.ac.nz/ml/weka/Slides3rdEd_Ch6-8.zip) |
| 209 | + - [1-5 章幻灯片(zip)](http://www.cs.waikato.ac.nz/ml/weka/Slides3rdEd_Ch1-5.zip) |
| 210 | + - [6-8 章幻灯片(zip)](http://www.cs.waikato.ac.nz/ml/weka/Slides3rdEd_Ch6-8.zip) |
209 | 211 | - [ ] [Machine Learning in Action](https://www.amazon.com/Machine-Learning-Action-Peter-Harrington/dp/1617290181/)
|
210 | 212 | - [GitHub repository](https://github.com/pbharrin/machinelearninginaction)
|
211 | 213 | - [ ] [Reactive Machine Learning Systems(MEAP)](https://www.manning.com/books/reactive-machine-learning-systems)
|
|
214 | 216 | - [GitHub repository(R)](http://www-bcf.usc.edu/~gareth/ISL/code.html)
|
215 | 217 | - [GitHub repository(Python)](https://github.com/JWarmenhoven/ISLR-python)
|
216 | 218 | - [视频](http://www.dataschool.io/15-hours-of-expert-machine-learning-videos/)
|
217 |
| -- [ ] [Building Machine Learning Systems with Python](https://www.packtpub.com/big-data-and-business-intelligence/building-machine-learning-systems-python) |
| 219 | +- [ ] [使用 Python 构建机器学习系统](https://www.packtpub.com/big-data-and-business-intelligence/building-machine-learning-systems-python) |
218 | 220 | - [GitHub repository](https://github.com/luispedro/BuildingMachineLearningSystemsWithPython)
|
219 |
| -- [ ] [Learning scikit-learn: Machine Learning in Python](https://www.packtpub.com/big-data-and-business-intelligence/learning-scikit-learn-machine-learning-python) |
| 221 | +- [ ] [学习 scikit-learn: 用 Python 进行机器学习](https://www.packtpub.com/big-data-and-business-intelligence/learning-scikit-learn-machine-learning-python) |
220 | 222 | - [GitHub repository](https://github.com/gmonce/scikit-learn-book)
|
221 | 223 | - [ ] [Probabilistic Programming & Bayesian Methods for Hackers](https://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/)
|
222 | 224 | - [ ] [Probabilistic Graphical Models: Principles and Techniques](https://www.amazon.com/Probabilistic-Graphical-Models-Principles-Computation/dp/0262013193)
|
223 | 225 | - [ ] [Machine Learning: Hands-On for Developers and Technical Professionals](https://www.amazon.com/Machine-Learning-Hands-Developers-Professionals/dp/1118889061)
|
224 | 226 | - [Machine Learning Hands-On for Developers and Technical Professionals review](https://blogs.msdn.microsoft.com/querysimon/2015/01/01/book-review-machine-learning-hands-on-for-developers-and-technical-professionals/)
|
225 | 227 | - [GitHub repository](https://github.com/jasebell/mlbook)
|
226 |
| -- [ ] [Learning from Data](https://www.amazon.com/Learning-Data-Yaser-S-Abu-Mostafa/dp/1600490069) |
| 228 | +- [ ] [从数据中学习](https://www.amazon.com/Learning-Data-Yaser-S-Abu-Mostafa/dp/1600490069) |
227 | 229 | - [在线教程](https://work.caltech.edu/telecourse.html)
|
228 |
| -- [ ] [Reinforcement Learning: An Introduction (2nd Edition)](https://webdocs.cs.ualberta.ca/~sutton/book/the-book-2nd.html) |
| 230 | +- [ ] [强化学习——简介(第 2 版)](https://webdocs.cs.ualberta.ca/~sutton/book/the-book-2nd.html) |
229 | 231 | - [GitHub repository](https://github.com/ShangtongZhang/reinforcement-learning-an-introduction)
|
230 | 232 | - [ ] [使用TensorFlow(MEAP)进行机器学习](https://www.manning.com/books/machine-learning-with-tensorflow)
|
231 | 233 | - [GitHub repository](https://github.com/BinRoot/TensorFlow-Book)
|
|
238 | 240 | ## 系列视频
|
239 | 241 | - [ ] [Machine Learning for Hackers](https://www.youtube.com/playlist?list=PL2-dafEMk2A4ut2pyv0fSIXqOzXtBGkLj)
|
240 | 242 | - [ ] [Fresh Machine Learning](https://www.youtube.com/playlist?list=PL2-dafEMk2A6Kc7pV6gHH-apBFxwFjKeY)
|
241 |
| -- [ ] [Machine Learning Recipes with Josh Gordon](https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal) |
242 |
| -- [ ] [Everything You Need to know about Machine Learning in 30 Minutes or Less](https://vimeo.com/43547079) |
243 |
| -- [ ] [A Friendly Introduction to Machine Learning](https://www.youtube.com/watch?v=IpGxLWOIZy4) |
| 243 | +- [ ] [Josh Gordon 的机器学习菜谱](https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal) |
| 244 | +- [ ] [在 30 分钟以内了解机器学习的一切](https://vimeo.com/43547079) |
| 245 | +- [ ] [一份友好的机器学习简介](https://www.youtube.com/watch?v=IpGxLWOIZy4) |
244 | 246 | - [ ] [Nuts and Bolts of Applying Deep Learning - Andrew Ng](https://www.youtube.com/watch?v=F1ka6a13S9I)
|
245 | 247 | - [ ] BigML Webinar
|
246 | 248 | - [视频](https://www.youtube.com/watch?list=PL1bKyu9GtNYHcjGa6ulrvRVcm1lAB8he3&v=W62ehrnOVqo)
|
|
249 | 251 | - [ ] [Machine learning in Python with scikit-learn](https://www.youtube.com/playlist?list=PL5-da3qGB5ICeMbQuqbbCOQWcS6OYBr5A)
|
250 | 252 | - [GitHub repository](https://github.com/justmarkham/scikit-learn-videos)
|
251 | 253 | - [博客](http://blog.kaggle.com/author/kevin-markham/)
|
252 |
| -- [ ] [My playlist – Top YouTube Videos on Machine Learning, Neural Network & Deep Learning](https://www.analyticsvidhya.com/blog/2015/07/top-youtube-videos-machine-learning-neural-network-deep-learning/) |
253 |
| -- [ ] [16 New Must Watch Tutorials, Courses on Machine Learning](https://www.analyticsvidhya.com/blog/2016/10/16-new-must-watch-tutorials-courses-on-machine-learning/) |
| 254 | +- [ ] [播放清单 - YouTuBe 上最热门的机器学习、神经网络、深度学习视频](https://www.analyticsvidhya.com/blog/2015/07/top-youtube-videos-machine-learning-neural-network-deep-learning/) |
| 255 | +- [ ] [16 个必看的机器学习教程](https://www.analyticsvidhya.com/blog/2016/10/16-new-must-watch-tutorials-courses-on-machine-learning/) |
254 | 256 | - [ ] [DeepLearning.TV](https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ)
|
255 | 257 | - [ ] [Learning To See](https://www.youtube.com/playlist?list=PLiaHhY2iBX9ihLasvE8BKnS2Xg8AhY6iV)
|
256 |
| -- [ ] [Neural networks class - Université de Sherbrooke](https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH) |
| 258 | +- [ ] [神经网络课程 - Université de Sherbrooke](https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH) |
257 | 259 | - [ ] [2016年的21个深度学习视频课程](https://www.analyticsvidhya.com/blog/2016/12/21-deep-learning-videos-tutorials-courses-on-youtube-from-2016/)
|
258 | 260 | - [ ] [2016年的30个顶级的机器学习与人工智能视频教程 Top Videos, Tutorials & Courses on Machine Learning & Artificial Intelligence from 2016](https://www.analyticsvidhya.com/blog/2016/12/30-top-videos-tutorials-courses-on-machine-learning-artificial-intelligence-from-2016/)
|
259 | 261 | - [ ] [程序员的深度学习实战](http://course.fast.ai/index.html)
|
|
267 | 269 | - [视频](https://www.youtube.com/playlist?list=PLZ9qNFMHZ-A4rycgrgOYma6zxF4BZGGPW)
|
268 | 270 | - [复习Coursera机器学习](https://rayli.net/blog/data/coursera-machine-learning-review/)
|
269 | 271 | - [Coursera的机器学习路线图](https://metacademy.org/roadmaps/cjrd/coursera_ml_supplement)
|
270 |
| -- [ ] [Machine Learning Distilled](https://code.tutsplus.com/courses/machine-learning-distilled) |
| 272 | +- [ ] [机器学习提纯](https://code.tutsplus.com/courses/machine-learning-distilled) |
271 | 273 | - [ ] [BigML training](https://bigml.com/training)
|
272 | 274 | - [ ] [Coursera的神经网络课程](https://www.coursera.org/learn/neural-networks)
|
273 | 275 | - 由Geoffrey Hinton(神经网络的先驱)执教
|
|
296 | 298 | - [ ] [深入机器学习](https://github.com/hangtwenty/dive-into-machine-learning)
|
297 | 299 | - [ ] [软件工程师的{机器、深度}学习](https://speakerdeck.com/pmigdal/machine-deep-learning-for-software-engineers)
|
298 | 300 | - [ ] [深度学习入门](https://deeplearning4j.org/deeplearningforbeginners.html)
|
| 301 | +- [ ] [深度学习基础](https://github.com/pauli-space/foundations_for_deep_learning) |
299 | 302 | - 大学中的机器学习课程
|
300 | 303 | - [ ] [斯坦福](http://ai.stanford.edu/courses/)
|
301 | 304 | - [ ] [机器学习夏令营](http://mlss.cc/)
|
|
326 | 329 | - [CreativeAi的机器学习](http://www.creativeai.net/?cat%5B0%5D=machine-learning)
|
327 | 330 |
|
328 | 331 | ## 成为一名开源贡献者
|
329 |
| -- [ ] [tensorflow/magenta: Magenta: Music and Art Generation with Machine Intelligence](https://github.com/tensorflow/magenta) |
330 |
| -- [ ] [tensorflow/tensorflow: Computation using data flow graphs for scalable machine learning](https://github.com/tensorflow/tensorflow) |
331 |
| -- [ ] [cmusatyalab/openface: Face recognition with deep neural networks.](https://github.com/cmusatyalab/openface) |
332 |
| -- [ ] [tensorflow/models/syntaxnet: Neural Models of Syntax.](https://github.com/tensorflow/models/tree/master/syntaxnet) |
| 332 | +- [ ] [tensorflow/magenta: Magenta: 用机器智能生成音乐与艺术](https://github.com/tensorflow/magenta) |
| 333 | +- [ ] [tensorflow/tensorflow: 使用数据流图进行计算进行可扩展的机器学习](https://github.com/tensorflow/tensorflow) |
| 334 | +- [ ] [cmusatyalab/openface: 使用深层神经网络进行面部识别](https://github.com/cmusatyalab/openface) |
| 335 | +- [ ] [tensorflow/models/syntaxnet: 神经网络模型语法](https://github.com/tensorflow/models/tree/master/syntaxnet) |
333 | 336 |
|
334 | 337 | ## 游戏
|
335 | 338 | - [Halite:AI编程游戏](https://halite.io/)
|
|
379 | 382 |
|
380 | 383 | - [KDnuggets](http://www.kdnuggets.com/)
|
381 | 384 |
|
| 385 | +## 相关会议 |
| 386 | + - ([NIPS](https://nips.cc/)) |
| 387 | + - ([ICLR](http://www.iclr.cc/doku.php?id=ICLR2017:main&redirect=1)) |
| 388 | + - ([AAAI](http://www.aaai.org/Conferences/AAAI/aaai17.php)) |
| 389 | + - ([IEEE CIG](http://www.ieee-cig.org/)) |
| 390 | + - ([IEEE ICMLA](http://www.icmla-conference.org/)) |
| 391 | + - ([ICML](https://2017.icml.cc/)) |
| 392 | + |
382 | 393 | ## 面试问题
|
383 | 394 | - [ ] [如何准备机器学习职位的面试](http://blog.udacity.com/2016/05/prepare-machine-learning-interview.html)
|
384 | 395 | - [ ] [40个机器学习与数据科学的面试问题](https://www.analyticsvidhya.com/blog/2016/09/40-interview-questions-asked-at-startups-in-machine-learning-data-science)
|
|
0 commit comments