Skip to content

Commit 7b2665d

Browse files
authored
Merge pull request ZuzooVn#48 from lsvih/patch-15
Update zh-CN Translation
2 parents 874f714 + 2a823d2 commit 7b2665d

File tree

1 file changed

+37
-26
lines changed

1 file changed

+37
-26
lines changed

README-zh-CN.md

Lines changed: 37 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -48,6 +48,7 @@
4848
- [游戏](#游戏)
4949
- [播客](#播客)
5050
- [社区](#社区)
51+
- [相关会议](#相关会议)
5152
- [面试问题](#面试问题)
5253
- [我崇拜的公司](#我崇拜的公司)
5354

@@ -150,6 +151,7 @@
150151
- [ ] [Part 4: 现代人脸识别与深度学习](https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78#.3rwmq0ddc)
151152
- [ ] [Part 5: 翻译与深度学习和序列的魔力](https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa#.wyfthap4c)
152153
- [ ] [Part 6: 如何使用深度学习进行语音识别](https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-with-deep-learning-28293c162f7a#.lhr1nnpcy)
154+
- [ ] [Part 7: 使用生成式对抗网络创造 8 像素艺术](https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7)
153155

154156
## [机器学习简介](https://triskell.github.io/2016/11/15/Inky-Machine-Learning.html)(用手指沾上墨水来书写机器学习简介)
155157
- [ ] [Part 1 : 什么是机器学习?](https://triskell.github.io/2016/10/23/What-is-Machine-Learning.html)
@@ -186,26 +188,26 @@
186188
- [收集的最简化、可执行的机器学习算法](https://github.com/rushter/MLAlgorithms)
187189

188190
## 入门书籍
189-
- [ ] [Data Smart: Using Data Science to Transform Information into Insight 1st Edition](https://www.amazon.com/Data-Smart-Science-Transform-Information/dp/111866146X)
190-
- [ ] [Data Science for Business: What you need to know about data mining and data­ analytic-thinking](https://www.amazon.com/Data-Science-Business-Data-Analytic-Thinking/dp/1449361323/)
191-
- [ ] [Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die](https://www.amazon.com/Predictive-Analytics-Power-Predict-Click/dp/1118356853)
191+
- [ ] [Data Smart: Using Data Science to Transform Information into Insight》第 1 版](https://www.amazon.com/Data-Smart-Science-Transform-Information/dp/111866146X)
192+
- [ ] [Data Science for Business: What you need to know about data mining and data analytic-thinking](https://www.amazon.com/Data-Science-Business-Data-Analytic-Thinking/dp/1449361323/)
193+
- [ ] [Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die](https://www.amazon.com/Predictive-Analytics-Power-Predict-Click/dp/1118356853)
192194

193195
## 实用书籍
194-
- [ ] [Machine Learning for Hackers](https://www.amazon.com/Machine-Learning-Hackers-Drew-Conway/dp/1449303714)
196+
- [ ] [Hacker 的机器学习](https://www.amazon.com/Machine-Learning-Hackers-Drew-Conway/dp/1449303714)
195197
- [GitHub repository(R)](https://github.com/johnmyleswhite/ML_for_Hackers)
196198
- [GitHub repository(Python)](https://github.com/carljv/Will_it_Python)
197-
- [ ] [Python Machine Learning](https://www.amazon.com/Python-Machine-Learning-Sebastian-Raschka-ebook/dp/B00YSILNL0)
199+
- [ ] [Python 机器学习](https://www.amazon.com/Python-Machine-Learning-Sebastian-Raschka-ebook/dp/B00YSILNL0)
198200
- [GitHub repository](https://github.com/rasbt/python-machine-learning-book)
199-
- [ ] [Programming Collective Intelligence: Building Smart Web 2.0 Applications](https://www.amazon.com/Programming-Collective-Intelligence-Building-Applications-ebook/dp/B00F8QDZWG)
200-
- [ ] [Machine Learning: An Algorithmic Perspective, Second Edition](https://www.amazon.com/Machine-Learning-Algorithmic-Perspective-Recognition/dp/1466583282)
201+
- [ ] [集体智慧编程: 创建智能 Web 2.0 应用](https://www.amazon.com/Programming-Collective-Intelligence-Building-Applications-ebook/dp/B00F8QDZWG)
202+
- [ ] [机器学习: 算法视角,第二版](https://www.amazon.com/Machine-Learning-Algorithmic-Perspective-Recognition/dp/1466583282)
201203
- [GitHub repository](https://github.com/alexsosn/MarslandMLAlgo)
202204
- [Resource repository](http://seat.massey.ac.nz/personal/s.r.marsland/MLbook.html)
203-
- [ ] [Introduction to Machine Learning with Python: A Guide for Data Scientists](http://shop.oreilly.com/product/0636920030515.do)
205+
- [ ] [Python 机器学习简介: 数据科学家指南](http://shop.oreilly.com/product/0636920030515.do)
204206
- [GitHub repository](https://github.com/amueller/introduction_to_ml_with_python)
205-
- [ ] [Data Mining: Practical Machine Learning Tools and Techniques, Third Edition](https://www.amazon.com/Data-Mining-Practical-Techniques-Management/dp/0123748569)
207+
- [ ] [数据挖掘: 机器学习工具与技术实践,第 3 版](https://www.amazon.com/Data-Mining-Practical-Techniques-Management/dp/0123748569)
206208
- Teaching material
207-
- [Slides for Chapters 1-5 (zip)](http://www.cs.waikato.ac.nz/ml/weka/Slides3rdEd_Ch1-5.zip)
208-
- [Slides for Chapters 6-8 (zip)](http://www.cs.waikato.ac.nz/ml/weka/Slides3rdEd_Ch6-8.zip)
209+
       - [1-5 章幻灯片(zip)](http://www.cs.waikato.ac.nz/ml/weka/Slides3rdEd_Ch1-5.zip)
210+
       - [6-8 章幻灯片(zip)](http://www.cs.waikato.ac.nz/ml/weka/Slides3rdEd_Ch6-8.zip)
209211
- [ ] [Machine Learning in Action](https://www.amazon.com/Machine-Learning-Action-Peter-Harrington/dp/1617290181/)
210212
- [GitHub repository](https://github.com/pbharrin/machinelearninginaction)
211213
- [ ] [Reactive Machine Learning Systems(MEAP)](https://www.manning.com/books/reactive-machine-learning-systems)
@@ -214,18 +216,18 @@
214216
- [GitHub repository(R)](http://www-bcf.usc.edu/~gareth/ISL/code.html)
215217
- [GitHub repository(Python)](https://github.com/JWarmenhoven/ISLR-python)
216218
   - [视频](http://www.dataschool.io/15-hours-of-expert-machine-learning-videos/)
217-
- [ ] [Building Machine Learning Systems with Python](https://www.packtpub.com/big-data-and-business-intelligence/building-machine-learning-systems-python)
219+
- [ ] [使用 Python 构建机器学习系统](https://www.packtpub.com/big-data-and-business-intelligence/building-machine-learning-systems-python)
218220
- [GitHub repository](https://github.com/luispedro/BuildingMachineLearningSystemsWithPython)
219-
- [ ] [Learning scikit-learn: Machine Learning in Python](https://www.packtpub.com/big-data-and-business-intelligence/learning-scikit-learn-machine-learning-python)
221+
- [ ] [学习 scikit-learn: Python 进行机器学习](https://www.packtpub.com/big-data-and-business-intelligence/learning-scikit-learn-machine-learning-python)
220222
- [GitHub repository](https://github.com/gmonce/scikit-learn-book)
221223
- [ ] [Probabilistic Programming & Bayesian Methods for Hackers](https://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/)
222224
- [ ] [Probabilistic Graphical Models: Principles and Techniques](https://www.amazon.com/Probabilistic-Graphical-Models-Principles-Computation/dp/0262013193)
223225
- [ ] [Machine Learning: Hands-On for Developers and Technical Professionals](https://www.amazon.com/Machine-Learning-Hands-Developers-Professionals/dp/1118889061)
224226
- [Machine Learning Hands-On for Developers and Technical Professionals review](https://blogs.msdn.microsoft.com/querysimon/2015/01/01/book-review-machine-learning-hands-on-for-developers-and-technical-professionals/)
225227
- [GitHub repository](https://github.com/jasebell/mlbook)
226-
- [ ] [Learning from Data](https://www.amazon.com/Learning-Data-Yaser-S-Abu-Mostafa/dp/1600490069)
228+
- [ ] [从数据中学习](https://www.amazon.com/Learning-Data-Yaser-S-Abu-Mostafa/dp/1600490069)
227229
   - [在线教程](https://work.caltech.edu/telecourse.html)
228-
- [ ] [Reinforcement Learning: An Introduction (2nd Edition)](https://webdocs.cs.ualberta.ca/~sutton/book/the-book-2nd.html)
230+
- [ ] [强化学习——简介(第 2 版)](https://webdocs.cs.ualberta.ca/~sutton/book/the-book-2nd.html)
229231
- [GitHub repository](https://github.com/ShangtongZhang/reinforcement-learning-an-introduction)
230232
- [ ] [使用TensorFlow(MEAP)进行机器学习](https://www.manning.com/books/machine-learning-with-tensorflow)
231233
- [GitHub repository](https://github.com/BinRoot/TensorFlow-Book)
@@ -238,9 +240,9 @@
238240
## 系列视频
239241
- [ ] [Machine Learning for Hackers](https://www.youtube.com/playlist?list=PL2-dafEMk2A4ut2pyv0fSIXqOzXtBGkLj)
240242
- [ ] [Fresh Machine Learning](https://www.youtube.com/playlist?list=PL2-dafEMk2A6Kc7pV6gHH-apBFxwFjKeY)
241-
- [ ] [Machine Learning Recipes with Josh Gordon](https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal)
242-
- [ ] [Everything You Need to know about Machine Learning in 30 Minutes or Less](https://vimeo.com/43547079)
243-
- [ ] [A Friendly Introduction to Machine Learning](https://www.youtube.com/watch?v=IpGxLWOIZy4)
243+
- [ ] [Josh Gordon 的机器学习菜谱](https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal)
244+
- [ ] [30 分钟以内了解机器学习的一切](https://vimeo.com/43547079)
245+
- [ ] [一份友好的机器学习简介](https://www.youtube.com/watch?v=IpGxLWOIZy4)
244246
- [ ] [Nuts and Bolts of Applying Deep Learning - Andrew Ng](https://www.youtube.com/watch?v=F1ka6a13S9I)
245247
- [ ] BigML Webinar
246248
   - [视频](https://www.youtube.com/watch?list=PL1bKyu9GtNYHcjGa6ulrvRVcm1lAB8he3&v=W62ehrnOVqo)
@@ -249,11 +251,11 @@
249251
- [ ] [Machine learning in Python with scikit-learn](https://www.youtube.com/playlist?list=PL5-da3qGB5ICeMbQuqbbCOQWcS6OYBr5A)
250252
- [GitHub repository](https://github.com/justmarkham/scikit-learn-videos)
251253
   - [博客](http://blog.kaggle.com/author/kevin-markham/)
252-
- [ ] [My playlist – Top YouTube Videos on Machine Learning, Neural Network & Deep Learning](https://www.analyticsvidhya.com/blog/2015/07/top-youtube-videos-machine-learning-neural-network-deep-learning/)
253-
- [ ] [16 New Must Watch Tutorials, Courses on Machine Learning](https://www.analyticsvidhya.com/blog/2016/10/16-new-must-watch-tutorials-courses-on-machine-learning/)
254+
- [ ] [播放清单 - YouTuBe 上最热门的机器学习、神经网络、深度学习视频](https://www.analyticsvidhya.com/blog/2015/07/top-youtube-videos-machine-learning-neural-network-deep-learning/)
255+
- [ ] [16 个必看的机器学习教程](https://www.analyticsvidhya.com/blog/2016/10/16-new-must-watch-tutorials-courses-on-machine-learning/)
254256
- [ ] [DeepLearning.TV](https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ)
255257
- [ ] [Learning To See](https://www.youtube.com/playlist?list=PLiaHhY2iBX9ihLasvE8BKnS2Xg8AhY6iV)
256-
- [ ] [Neural networks class - Université de Sherbrooke](https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH)
258+
- [ ] [神经网络课程 - Université de Sherbrooke](https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH)
257259
- [ ] [2016年的21个深度学习视频课程](https://www.analyticsvidhya.com/blog/2016/12/21-deep-learning-videos-tutorials-courses-on-youtube-from-2016/)
258260
- [ ] [2016年的30个顶级的机器学习与人工智能视频教程 Top Videos, Tutorials & Courses on Machine Learning & Artificial Intelligence from 2016](https://www.analyticsvidhya.com/blog/2016/12/30-top-videos-tutorials-courses-on-machine-learning-artificial-intelligence-from-2016/)
259261
- [ ] [程序员的深度学习实战](http://course.fast.ai/index.html)
@@ -267,7 +269,7 @@
267269
- [视频](https://www.youtube.com/playlist?list=PLZ9qNFMHZ-A4rycgrgOYma6zxF4BZGGPW)
268270
- [复习Coursera机器学习](https://rayli.net/blog/data/coursera-machine-learning-review/)
269271
- [Coursera的机器学习路线图](https://metacademy.org/roadmaps/cjrd/coursera_ml_supplement)
270-
- [ ] [Machine Learning Distilled](https://code.tutsplus.com/courses/machine-learning-distilled)
272+
- [ ] [机器学习提纯](https://code.tutsplus.com/courses/machine-learning-distilled)
271273
- [ ] [BigML training](https://bigml.com/training)
272274
- [ ] [Coursera的神经网络课程](https://www.coursera.org/learn/neural-networks)
273275
- 由Geoffrey Hinton(神经网络的先驱)执教
@@ -296,6 +298,7 @@
296298
- [ ] [深入机器学习](https://github.com/hangtwenty/dive-into-machine-learning)
297299
- [ ] [软件工程师的{机器、深度}学习](https://speakerdeck.com/pmigdal/machine-deep-learning-for-software-engineers)
298300
- [ ] [深度学习入门](https://deeplearning4j.org/deeplearningforbeginners.html)
301+
- [ ] [深度学习基础](https://github.com/pauli-space/foundations_for_deep_learning)
299302
- 大学中的机器学习课程
300303
- [ ] [斯坦福](http://ai.stanford.edu/courses/)
301304
- [ ] [机器学习夏令营](http://mlss.cc/)
@@ -326,10 +329,10 @@
326329
- [CreativeAi的机器学习](http://www.creativeai.net/?cat%5B0%5D=machine-learning)
327330

328331
## 成为一名开源贡献者
329-
- [ ] [tensorflow/magenta: Magenta: Music and Art Generation with Machine Intelligence](https://github.com/tensorflow/magenta)
330-
- [ ] [tensorflow/tensorflow: Computation using data flow graphs for scalable machine learning](https://github.com/tensorflow/tensorflow)
331-
- [ ] [cmusatyalab/openface: Face recognition with deep neural networks.](https://github.com/cmusatyalab/openface)
332-
- [ ] [tensorflow/models/syntaxnet: Neural Models of Syntax.](https://github.com/tensorflow/models/tree/master/syntaxnet)
332+
- [ ] [tensorflow/magenta: Magenta: 用机器智能生成音乐与艺术](https://github.com/tensorflow/magenta)
333+
- [ ] [tensorflow/tensorflow: 使用数据流图进行计算进行可扩展的机器学习](https://github.com/tensorflow/tensorflow)
334+
- [ ] [cmusatyalab/openface: 使用深层神经网络进行面部识别](https://github.com/cmusatyalab/openface)
335+
- [ ] [tensorflow/models/syntaxnet: 神经网络模型语法](https://github.com/tensorflow/models/tree/master/syntaxnet)
333336

334337
## 游戏
335338
- [Halite:AI编程游戏](https://halite.io/)
@@ -379,6 +382,14 @@
379382

380383
- [KDnuggets](http://www.kdnuggets.com/)
381384

385+
## 相关会议
386+
 - ([NIPS](https://nips.cc/))
387+
- ([ICLR](http://www.iclr.cc/doku.php?id=ICLR2017:main&redirect=1))
388+
- ([AAAI](http://www.aaai.org/Conferences/AAAI/aaai17.php))
389+
 - ([IEEE CIG](http://www.ieee-cig.org/))
390+
 - ([IEEE ICMLA](http://www.icmla-conference.org/))
391+
- ([ICML](https://2017.icml.cc/))
392+
382393
## 面试问题
383394
- [ ] [如何准备机器学习职位的面试](http://blog.udacity.com/2016/05/prepare-machine-learning-interview.html)
384395
- [ ] [40个机器学习与数据科学的面试问题](https://www.analyticsvidhya.com/blog/2016/09/40-interview-questions-asked-at-startups-in-machine-learning-data-science)

0 commit comments

Comments
 (0)