|
| 1 | +import argparse |
| 2 | +import os |
| 3 | +import shutil |
| 4 | +import time |
| 5 | + |
| 6 | +import torch |
| 7 | +import torch.nn as nn |
| 8 | +import torch.nn.parallel |
| 9 | +import torch.backends.cudnn as cudnn |
| 10 | +import torch.optim |
| 11 | +import torch.utils.data |
| 12 | +import torchvision.transforms as transforms |
| 13 | +import torchvision.datasets as datasets |
| 14 | +import torchvision.models as models |
| 15 | + |
| 16 | + |
| 17 | +model_names = sorted(name for name in models.__dict__ |
| 18 | + if name.islower() and not name.startswith("__") |
| 19 | + and callable(models.__dict__[name])) |
| 20 | + |
| 21 | + |
| 22 | +parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') |
| 23 | +parser.add_argument('data', metavar='DIR', |
| 24 | + help='path to dataset') |
| 25 | +parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18', |
| 26 | + choices=model_names, |
| 27 | + help='model architecture: ' + |
| 28 | + ' | '.join(model_names) + |
| 29 | + ' (default: resnet18)') |
| 30 | +parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', |
| 31 | + help='number of data loading workers (default: 4)') |
| 32 | +parser.add_argument('--epochs', default=90, type=int, metavar='N', |
| 33 | + help='number of total epochs to run') |
| 34 | +parser.add_argument('--start-epoch', default=0, type=int, metavar='N', |
| 35 | + help='manual epoch number (useful on restarts)') |
| 36 | +parser.add_argument('-b', '--batch-size', default=256, type=int, |
| 37 | + metavar='N', help='mini-batch size (default: 256)') |
| 38 | +parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, |
| 39 | + metavar='LR', help='initial learning rate') |
| 40 | +parser.add_argument('--momentum', default=0.9, type=float, metavar='M', |
| 41 | + help='momentum') |
| 42 | +parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, |
| 43 | + metavar='W', help='weight decay (default: 1e-4)') |
| 44 | +parser.add_argument('--print-freq', '-p', default=10, type=int, |
| 45 | + metavar='N', help='print frequency (default: 10)') |
| 46 | +parser.add_argument('--resume', default='', type=str, metavar='PATH', |
| 47 | + help='path to latest checkpoint (default: none)') |
| 48 | +parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', |
| 49 | + help='evaluate model on validation set') |
| 50 | +parser.add_argument('--pretrained', dest='pretrained', action='store_true', |
| 51 | + help='use pre-trained model') |
| 52 | + |
| 53 | +best_prec1 = 0 |
| 54 | + |
| 55 | + |
| 56 | +def main(): |
| 57 | + global args, best_prec1 |
| 58 | + args = parser.parse_args() |
| 59 | + |
| 60 | + # create model |
| 61 | + if args.pretrained: |
| 62 | + print("=> using pre-trained model '{}'".format(args.arch)) |
| 63 | + model = models.__dict__[args.arch](pretrained=True) |
| 64 | + else: |
| 65 | + print("=> creating model '{}'".format(args.arch)) |
| 66 | + model = models.__dict__[args.arch]() |
| 67 | + |
| 68 | + if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): |
| 69 | + model.features = torch.nn.DataParallel(model.features) |
| 70 | + model.cuda() |
| 71 | + else: |
| 72 | + model = torch.nn.DataParallel(model).cuda() |
| 73 | + |
| 74 | + # define loss function (criterion) and optimizer |
| 75 | + criterion = nn.CrossEntropyLoss().cuda() |
| 76 | + |
| 77 | + optimizer = torch.optim.SGD(model.parameters(), args.lr, |
| 78 | + momentum=args.momentum, |
| 79 | + weight_decay=args.weight_decay) |
| 80 | + |
| 81 | + # optionally resume from a checkpoint |
| 82 | + if args.resume: |
| 83 | + if os.path.isfile(args.resume): |
| 84 | + print("=> loading checkpoint '{}'".format(args.resume)) |
| 85 | + checkpoint = torch.load(args.resume) |
| 86 | + args.start_epoch = checkpoint['epoch'] |
| 87 | + best_prec1 = checkpoint['best_prec1'] |
| 88 | + model.load_state_dict(checkpoint['state_dict']) |
| 89 | + optimizer.load_state_dict(checkpoint['optimizer']) |
| 90 | + print("=> loaded checkpoint '{}' (epoch {})" |
| 91 | + .format(args.resume, checkpoint['epoch'])) |
| 92 | + else: |
| 93 | + print("=> no checkpoint found at '{}'".format(args.resume)) |
| 94 | + |
| 95 | + cudnn.benchmark = True |
| 96 | + |
| 97 | + # Data loading code |
| 98 | + traindir = os.path.join(args.data, 'train') |
| 99 | + valdir = os.path.join(args.data, 'val') |
| 100 | + normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], |
| 101 | + std=[0.229, 0.224, 0.225]) |
| 102 | + |
| 103 | + train_loader = torch.utils.data.DataLoader( |
| 104 | + datasets.ImageFolder(traindir, transforms.Compose([ |
| 105 | + transforms.RandomSizedCrop(224), |
| 106 | + transforms.RandomHorizontalFlip(), |
| 107 | + transforms.ToTensor(), |
| 108 | + normalize, |
| 109 | + ])), |
| 110 | + batch_size=args.batch_size, shuffle=True, |
| 111 | + num_workers=args.workers, pin_memory=True) |
| 112 | + |
| 113 | + val_loader = torch.utils.data.DataLoader( |
| 114 | + datasets.ImageFolder(valdir, transforms.Compose([ |
| 115 | + transforms.Scale(256), |
| 116 | + transforms.CenterCrop(224), |
| 117 | + transforms.ToTensor(), |
| 118 | + normalize, |
| 119 | + ])), |
| 120 | + batch_size=args.batch_size, shuffle=False, |
| 121 | + num_workers=args.workers, pin_memory=True) |
| 122 | + |
| 123 | + if args.evaluate: |
| 124 | + validate(val_loader, model, criterion) |
| 125 | + return |
| 126 | + |
| 127 | + for epoch in range(args.start_epoch, args.epochs): |
| 128 | + adjust_learning_rate(optimizer, epoch) |
| 129 | + |
| 130 | + # train for one epoch |
| 131 | + train(train_loader, model, criterion, optimizer, epoch) |
| 132 | + |
| 133 | + # evaluate on validation set |
| 134 | + prec1 = validate(val_loader, model, criterion) |
| 135 | + |
| 136 | + # remember best prec@1 and save checkpoint |
| 137 | + is_best = prec1 > best_prec1 |
| 138 | + best_prec1 = max(prec1, best_prec1) |
| 139 | + save_checkpoint({ |
| 140 | + 'epoch': epoch + 1, |
| 141 | + 'arch': args.arch, |
| 142 | + 'state_dict': model.state_dict(), |
| 143 | + 'best_prec1': best_prec1, |
| 144 | + 'optimizer' : optimizer.state_dict(), |
| 145 | + }, is_best) |
| 146 | + |
| 147 | + |
| 148 | +def train(train_loader, model, criterion, optimizer, epoch): |
| 149 | + batch_time = AverageMeter() |
| 150 | + data_time = AverageMeter() |
| 151 | + losses = AverageMeter() |
| 152 | + top1 = AverageMeter() |
| 153 | + top5 = AverageMeter() |
| 154 | + |
| 155 | + # switch to train mode |
| 156 | + model.train() |
| 157 | + |
| 158 | + end = time.time() |
| 159 | + for i, (input, target) in enumerate(train_loader): |
| 160 | + # measure data loading time |
| 161 | + data_time.update(time.time() - end) |
| 162 | + |
| 163 | + target = target.cuda(async=True) |
| 164 | + input_var = torch.autograd.Variable(input) |
| 165 | + target_var = torch.autograd.Variable(target) |
| 166 | + |
| 167 | + # compute output |
| 168 | + output = model(input_var) |
| 169 | + loss = criterion(output, target_var) |
| 170 | + |
| 171 | + # measure accuracy and record loss |
| 172 | + prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) |
| 173 | + losses.update(loss.data[0], input.size(0)) |
| 174 | + top1.update(prec1[0], input.size(0)) |
| 175 | + top5.update(prec5[0], input.size(0)) |
| 176 | + |
| 177 | + # compute gradient and do SGD step |
| 178 | + optimizer.zero_grad() |
| 179 | + loss.backward() |
| 180 | + optimizer.step() |
| 181 | + |
| 182 | + # measure elapsed time |
| 183 | + batch_time.update(time.time() - end) |
| 184 | + end = time.time() |
| 185 | + |
| 186 | + if i % args.print_freq == 0: |
| 187 | + print('Epoch: [{0}][{1}/{2}]\t' |
| 188 | + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' |
| 189 | + 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' |
| 190 | + 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' |
| 191 | + 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' |
| 192 | + 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( |
| 193 | + epoch, i, len(train_loader), batch_time=batch_time, |
| 194 | + data_time=data_time, loss=losses, top1=top1, top5=top5)) |
| 195 | + |
| 196 | + |
| 197 | +def validate(val_loader, model, criterion): |
| 198 | + batch_time = AverageMeter() |
| 199 | + losses = AverageMeter() |
| 200 | + top1 = AverageMeter() |
| 201 | + top5 = AverageMeter() |
| 202 | + |
| 203 | + # switch to evaluate mode |
| 204 | + model.eval() |
| 205 | + |
| 206 | + end = time.time() |
| 207 | + for i, (input, target) in enumerate(val_loader): |
| 208 | + target = target.cuda(async=True) |
| 209 | + input_var = torch.autograd.Variable(input, volatile=True) |
| 210 | + target_var = torch.autograd.Variable(target, volatile=True) |
| 211 | + |
| 212 | + # compute output |
| 213 | + output = model(input_var) |
| 214 | + loss = criterion(output, target_var) |
| 215 | + |
| 216 | + # measure accuracy and record loss |
| 217 | + prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) |
| 218 | + losses.update(loss.data[0], input.size(0)) |
| 219 | + top1.update(prec1[0], input.size(0)) |
| 220 | + top5.update(prec5[0], input.size(0)) |
| 221 | + |
| 222 | + # measure elapsed time |
| 223 | + batch_time.update(time.time() - end) |
| 224 | + end = time.time() |
| 225 | + |
| 226 | + if i % args.print_freq == 0: |
| 227 | + print('Test: [{0}/{1}]\t' |
| 228 | + 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' |
| 229 | + 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' |
| 230 | + 'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' |
| 231 | + 'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( |
| 232 | + i, len(val_loader), batch_time=batch_time, loss=losses, |
| 233 | + top1=top1, top5=top5)) |
| 234 | + |
| 235 | + print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}' |
| 236 | + .format(top1=top1, top5=top5)) |
| 237 | + |
| 238 | + return top1.avg |
| 239 | + |
| 240 | + |
| 241 | +def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): |
| 242 | + torch.save(state, filename) |
| 243 | + if is_best: |
| 244 | + shutil.copyfile(filename, 'model_best.pth.tar') |
| 245 | + |
| 246 | + |
| 247 | +class AverageMeter(object): |
| 248 | + """Computes and stores the average and current value""" |
| 249 | + def __init__(self): |
| 250 | + self.reset() |
| 251 | + |
| 252 | + def reset(self): |
| 253 | + self.val = 0 |
| 254 | + self.avg = 0 |
| 255 | + self.sum = 0 |
| 256 | + self.count = 0 |
| 257 | + |
| 258 | + def update(self, val, n=1): |
| 259 | + self.val = val |
| 260 | + self.sum += val * n |
| 261 | + self.count += n |
| 262 | + self.avg = self.sum / self.count |
| 263 | + |
| 264 | + |
| 265 | +def adjust_learning_rate(optimizer, epoch): |
| 266 | + """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" |
| 267 | + lr = args.lr * (0.1 ** (epoch // 30)) |
| 268 | + for param_group in optimizer.param_groups: |
| 269 | + param_group['lr'] = lr |
| 270 | + |
| 271 | + |
| 272 | +def accuracy(output, target, topk=(1,)): |
| 273 | + """Computes the precision@k for the specified values of k""" |
| 274 | + maxk = max(topk) |
| 275 | + batch_size = target.size(0) |
| 276 | + |
| 277 | + _, pred = output.topk(maxk, 1, True, True) |
| 278 | + pred = pred.t() |
| 279 | + correct = pred.eq(target.view(1, -1).expand_as(pred)) |
| 280 | + |
| 281 | + res = [] |
| 282 | + for k in topk: |
| 283 | + correct_k = correct[:k].view(-1).float().sum(0) |
| 284 | + res.append(correct_k.mul_(100.0 / batch_size)) |
| 285 | + return res |
| 286 | + |
| 287 | + |
| 288 | +if __name__ == '__main__': |
| 289 | + main() |
0 commit comments