-
Notifications
You must be signed in to change notification settings - Fork 37
/
decimal.go
834 lines (758 loc) · 20.1 KB
/
decimal.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
// Copyright 2016 The Cockroach Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
package apd
import (
"errors"
"fmt"
"strconv"
"strings"
"unsafe"
"database/sql/driver"
)
// Decimal is an arbitrary-precision decimal. Its value is:
//
// Negative × Coeff × 10**Exponent
//
// Coeff must be positive. If it is negative results may be incorrect and
// apd may panic.
type Decimal struct {
Form Form
Negative bool
Exponent int32
Coeff BigInt
}
// Form specifies the form of a Decimal.
type Form int8
const (
// These constants must be in the following order. CmpTotal assumes that
// the order of these constants reflects the total order on decimals.
// Finite is the finite form.
Finite Form = iota
// Infinite is the infinite form.
Infinite
// NaNSignaling is the signaling NaN form. It will always raise the
// InvalidOperation condition during an operation.
NaNSignaling
// NaN is the NaN form.
NaN
)
var (
decimalNaN = &Decimal{Form: NaN}
decimalInfinity = &Decimal{Form: Infinite}
)
//go:generate stringer -type=Form
const (
// TODO(mjibson): MaxExponent is set because both upscale and Round
// perform a calculation of 10^x, where x is an exponent. This is done by
// big.Int.Exp. This restriction could be lifted if better algorithms were
// determined during upscale and Round that don't need to perform Exp.
// MaxExponent is the highest exponent supported. Exponents near this range will
// perform very slowly (many seconds per operation).
MaxExponent = 100000
// MinExponent is the lowest exponent supported with the same limitations as
// MaxExponent.
MinExponent = -MaxExponent
)
// New creates a new decimal with the given coefficient and exponent.
func New(coeff int64, exponent int32) *Decimal {
d := new(Decimal)
d.SetFinite(coeff, exponent)
return d
}
// NewWithBigInt creates a new decimal with the given coefficient and exponent.
func NewWithBigInt(coeff *BigInt, exponent int32) *Decimal {
d := new(Decimal)
d.Coeff.Set(coeff)
if d.Coeff.Sign() < 0 {
d.Negative = true
d.Coeff.Abs(&d.Coeff)
}
d.Exponent = exponent
return d
}
func consumePrefix(s, prefix string) (string, bool) {
if strings.HasPrefix(s, prefix) {
return s[len(prefix):], true
}
return s, false
}
func (d *Decimal) setString(c *Context, s string) (Condition, error) {
orig := s
s, d.Negative = consumePrefix(s, "-")
if !d.Negative {
s, _ = consumePrefix(s, "+")
}
s = strings.ToLower(s)
d.Exponent = 0
d.Coeff.SetInt64(0)
// Until there are no parse errors, leave as NaN.
d.Form = NaN
if strings.HasPrefix(s, "-") || strings.HasPrefix(s, "+") {
return 0, fmt.Errorf("could not parse: %s", orig)
}
switch s {
case "infinity", "inf":
d.Form = Infinite
return 0, nil
}
isNaN := false
s, consumed := consumePrefix(s, "nan")
if consumed {
isNaN = true
}
s, consumed = consumePrefix(s, "snan")
if consumed {
isNaN = true
d.Form = NaNSignaling
}
if isNaN {
if s != "" {
// We ignore these digits, but must verify them.
_, err := strconv.ParseUint(s, 10, 64)
if err != nil {
return 0, fmt.Errorf("parse payload: %s: %w", s, err)
}
}
return 0, nil
}
exps := make([]int64, 0, 2)
if i := strings.IndexByte(s, 'e'); i >= 0 {
exp, err := strconv.ParseInt(s[i+1:], 10, 32)
if err != nil {
return 0, fmt.Errorf("parse exponent: %s: %w", s[i+1:], err)
}
exps = append(exps, exp)
s = s[:i]
}
if i := strings.IndexByte(s, '.'); i >= 0 {
exp := int64(len(s) - i - 1)
exps = append(exps, -exp)
s = s[:i] + s[i+1:]
}
if _, ok := d.Coeff.SetString(s, 10); !ok {
return 0, fmt.Errorf("parse mantissa: %s", s)
}
// No parse errors, can now flag as finite.
d.Form = Finite
return c.goError(d.setExponent(c, unknownNumDigits, 0, exps...))
}
// NewFromString creates a new decimal from s. It has no restrictions on
// exponents or precision.
func NewFromString(s string) (*Decimal, Condition, error) {
return BaseContext.NewFromString(s)
}
// SetString sets d to s and returns d. It has no restrictions on exponents
// or precision.
func (d *Decimal) SetString(s string) (*Decimal, Condition, error) {
return BaseContext.SetString(d, s)
}
// NewFromString creates a new decimal from s. The returned Decimal has its
// exponents restricted by the context and its value rounded if it contains more
// digits than the context's precision.
func (c *Context) NewFromString(s string) (*Decimal, Condition, error) {
d := new(Decimal)
return c.SetString(d, s)
}
// SetString sets d to s and returns d. The returned Decimal has its exponents
// restricted by the context and its value rounded if it contains more digits
// than the context's precision.
func (c *Context) SetString(d *Decimal, s string) (*Decimal, Condition, error) {
res, err := d.setString(c, s)
if err != nil {
return nil, 0, err
}
res |= c.round(d, d)
_, err = c.goError(res)
return d, res, err
}
// Set sets d's fields to the values of x and returns d.
//
//gcassert:inline
func (d *Decimal) Set(x *Decimal) *Decimal {
if d == x {
return d
}
return d.setSlow(x)
}
// setSlow is split from Set to allow the aliasing fast-path to be
// inlined in callers.
func (d *Decimal) setSlow(x *Decimal) *Decimal {
d.Form = x.Form
d.Negative = x.Negative
d.Exponent = x.Exponent
d.Coeff.Set(&x.Coeff)
return d
}
// SetInt64 sets d to x and returns d.
func (d *Decimal) SetInt64(x int64) *Decimal {
return d.SetFinite(x, 0)
}
// SetFinite sets d to x with exponent e and returns d.
func (d *Decimal) SetFinite(x int64, e int32) *Decimal {
d.setCoefficient(x)
d.Exponent = e
return d
}
// setCoefficient sets d's coefficient and negative value to x and its Form
// to Finite The exponent is not changed. Since the exponent is not changed
// (and this is thus easy to misuse), this is unexported for internal use only.
func (d *Decimal) setCoefficient(x int64) {
d.Negative = x < 0
d.Coeff.SetInt64(x)
d.Coeff.Abs(&d.Coeff)
d.Form = Finite
}
// SetFloat64 sets d's Coefficient and Exponent to x and returns d. d will
// hold the exact value of f.
func (d *Decimal) SetFloat64(f float64) (*Decimal, error) {
var buf [32]byte // Avoid most of the allocations in strconv.
_, _, err := d.SetString(string(strconv.AppendFloat(buf[:0], f, 'E', -1, 64)))
return d, err
}
// Int64 returns the int64 representation of x. If x cannot be represented in an
// int64, an error is returned.
func (d *Decimal) Int64() (int64, error) {
if d.Form != Finite {
return 0, fmt.Errorf("%s is not finite", d.String())
}
var integ, frac Decimal
d.Modf(&integ, &frac)
if !frac.IsZero() {
return 0, fmt.Errorf("%s: has fractional part", d.String())
}
var ed ErrDecimal
if integ.Cmp(decimalMaxInt64) > 0 {
return 0, fmt.Errorf("%s: greater than max int64", d.String())
}
if integ.Cmp(decimalMinInt64) < 0 {
return 0, fmt.Errorf("%s: less than min int64", d.String())
}
if err := ed.Err(); err != nil {
return 0, err
}
v := integ.Coeff.Int64()
for i := int32(0); i < integ.Exponent; i++ {
v *= 10
}
if d.Negative {
v = -v
}
return v, nil
}
// Float64 returns the float64 representation of x. This conversion may lose
// data (see strconv.ParseFloat for caveats).
func (d *Decimal) Float64() (float64, error) {
return strconv.ParseFloat(d.String(), 64)
}
const (
errExponentOutOfRangeStr = "exponent out of range"
unknownNumDigits = int64(-1)
)
// setExponent sets d's Exponent to the sum of xs. Each value and the sum
// of xs must fit within an int32. An error occurs if the sum is outside of
// the MaxExponent or MinExponent range. nd is the number of digits in d, as
// computed by NumDigits. Callers can pass unknownNumDigits to indicate that
// they have not yet computed this digit count, in which case setExponent will
// do so. res is any Condition previously set for this operation, which can
// cause Underflow to be set if, for example, Inexact is already set.
func (d *Decimal) setExponent(c *Context, nd int64, res Condition, xs ...int64) Condition {
var sum int64
for _, x := range xs {
if x > MaxExponent {
return SystemOverflow | Overflow
}
if x < MinExponent {
return SystemUnderflow | Underflow
}
sum += x
}
r := int32(sum)
if nd == unknownNumDigits {
nd = d.NumDigits()
}
// adj is the adjusted exponent: exponent + clength - 1
adj := sum + nd - 1
// Make sure it is less than the system limits.
if adj > MaxExponent {
return SystemOverflow | Overflow
}
if adj < MinExponent {
return SystemUnderflow | Underflow
}
v := int32(adj)
// d is subnormal.
if v < c.MinExponent {
if !d.IsZero() {
res |= Subnormal
}
Etiny := c.MinExponent - (int32(c.Precision) - 1)
// Only need to round if exponent < Etiny.
if r < Etiny {
// We need to take off (r - Etiny) digits. Split up d.Coeff into integer and
// fractional parts and do operations similar Round. We avoid calling Round
// directly because it calls setExponent and modifies the result's exponent
// and coeff in ways that would be wrong here.
var tmp Decimal
tmp.Coeff.Set(&d.Coeff)
tmp.Exponent = r - Etiny
var integ, frac Decimal
tmp.Modf(&integ, &frac)
frac.Abs(&frac)
if !frac.IsZero() {
res |= Inexact
if c.Rounding.ShouldAddOne(&integ.Coeff, integ.Negative, frac.Cmp(decimalHalf)) {
integ.Coeff.Add(&integ.Coeff, bigOne)
}
}
if integ.IsZero() {
res |= Clamped
}
r = Etiny
d.Coeff.Set(&integ.Coeff)
res |= Rounded
}
} else if v > c.MaxExponent {
if d.IsZero() {
res |= Clamped
r = c.MaxExponent
} else {
res |= Overflow | Inexact
d.Form = Infinite
}
}
if res.Inexact() && res.Subnormal() {
res |= Underflow
}
d.Exponent = r
return res
}
// upscale converts a and b to BigInts with the same scaling. It returns
// them with this scaling, along with the scaling. An error can be produced
// if the resulting scale factor is out of range. The tmp argument must be
// provided and can be (but won't always be) one of the return values.
func upscale(a, b *Decimal, tmp *BigInt) (*BigInt, *BigInt, int32, error) {
if a.Exponent == b.Exponent {
return &a.Coeff, &b.Coeff, a.Exponent, nil
}
swapped := false
if a.Exponent < b.Exponent {
swapped = true
b, a = a, b
}
s := int64(a.Exponent) - int64(b.Exponent)
// TODO(mjibson): figure out a better way to upscale numbers with highly
// differing exponents.
if s > MaxExponent {
return nil, nil, 0, errors.New(errExponentOutOfRangeStr)
}
x := tmp
e := tableExp10(s, x)
x.Mul(&a.Coeff, e)
y := &b.Coeff
if swapped {
x, y = y, x
}
return x, y, b.Exponent, nil
}
// setBig sets b to d's coefficient with negative.
func (d *Decimal) setBig(b *BigInt) *BigInt {
b.Set(&d.Coeff)
if d.Negative {
b.Neg(b)
}
return b
}
// CmpTotal compares d and x using their abstract representation rather
// than their numerical value. A total ordering is defined for all possible
// abstract representations, as described below. If the first operand is
// lower in the total order than the second operand then the result is -1,
// if the operands have the same abstract representation then the result is
// 0, and if the first operand is higher in the total order than the second
// operand then the result is 1.
//
// Numbers (representations which are not NaNs) are ordered such that a
// larger numerical value is higher in the ordering. If two representations
// have the same numerical value then the exponent is taken into account;
// larger (more positive) exponents are higher in the ordering.
//
// For example, the following values are ordered from lowest to highest. Note
// the difference in ordering between 1.2300 and 1.23.
//
// -NaN
// -NaNSignaling
// -Infinity
// -127
// -1.00
// -1
// -0.000
// -0
// 0
// 1.2300
// 1.23
// 1E+9
// Infinity
// NaNSignaling
// NaN
func (d *Decimal) CmpTotal(x *Decimal) int {
do := d.cmpOrder()
xo := x.cmpOrder()
if do < xo {
return -1
}
if do > xo {
return 1
}
switch d.Form {
case Finite:
// d and x have the same sign and form, compare their value.
if c := d.Cmp(x); c != 0 {
return c
}
lt := -1
gt := 1
if d.Negative {
lt = 1
gt = -1
}
// Values are equal, compare exponents.
if d.Exponent < x.Exponent {
return lt
}
if d.Exponent > x.Exponent {
return gt
}
return 0
case Infinite:
return 0
default:
return d.Coeff.Cmp(&x.Coeff)
}
}
func (d *Decimal) cmpOrder() int {
v := int(d.Form) + 1
if d.Negative {
v = -v
}
return v
}
// Cmp compares x and y and sets d to:
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
//
// This comparison respects the normal rules of special values (like NaN),
// and does not compare them.
func (c *Context) Cmp(d, x, y *Decimal) (Condition, error) {
if c.shouldSetAsNaN(x, y) {
return c.setAsNaN(d, x, y)
}
v := x.Cmp(y)
d.SetInt64(int64(v))
return 0, nil
}
// Cmp compares d and x and returns:
//
// -1 if d < x
// 0 if d == x
// +1 if d > x
// undefined if d or x are NaN
func (d *Decimal) Cmp(x *Decimal) int {
ds := d.Sign()
xs := x.Sign()
// First compare signs.
if ds < xs {
return -1
} else if ds > xs {
return 1
} else if ds == 0 && xs == 0 {
return 0
}
// Use gt and lt here with flipped signs if d is negative. gt and lt then
// allow for simpler comparisons since we can ignore the sign of the decimals
// and only worry about the form and value.
gt := 1
lt := -1
if ds == -1 {
gt = -1
lt = 1
}
if d.Form == Infinite {
if x.Form == Infinite {
return 0
}
return gt
} else if x.Form == Infinite {
return lt
}
if d.Exponent == x.Exponent {
cmp := d.Coeff.Cmp(&x.Coeff)
if ds < 0 {
cmp = -cmp
}
return cmp
}
// Next compare adjusted exponents.
dn := d.NumDigits() + int64(d.Exponent)
xn := x.NumDigits() + int64(x.Exponent)
if dn < xn {
return lt
} else if dn > xn {
return gt
}
// Now have to use aligned BigInts. This function previously used upscale to
// align in all cases, but that requires an error in the return value. upscale
// does that so that it can fail if it needs to take the Exp of too-large a
// number, which is very slow. The only way for that to happen here is for d
// and x's coefficients to be of hugely differing values. That is practically
// more difficult, so we are assuming the user is already comfortable with
// slowness in those operations.
var cmp int
if d.Exponent < x.Exponent {
var xScaled, tmpE BigInt
xScaled.Set(&x.Coeff)
xScaled.Mul(&xScaled, tableExp10(int64(x.Exponent)-int64(d.Exponent), &tmpE))
cmp = d.Coeff.Cmp(&xScaled)
} else {
var dScaled, tmpE BigInt
dScaled.Set(&d.Coeff)
dScaled.Mul(&dScaled, tableExp10(int64(d.Exponent)-int64(x.Exponent), &tmpE))
cmp = dScaled.Cmp(&x.Coeff)
}
if ds < 0 {
cmp = -cmp
}
return cmp
}
// Sign returns, if d is Finite:
//
// -1 if d < 0
// 0 if d == 0 or -0
// +1 if d > 0
//
// Otherwise (if d is Infinite or NaN):
//
// -1 if d.Negative == true
// +1 if d.Negative == false
func (d *Decimal) Sign() int {
if d.Form == Finite && d.Coeff.Sign() == 0 {
return 0
}
if d.Negative {
return -1
}
return 1
}
// IsZero returns true if d == 0 or -0.
func (d *Decimal) IsZero() bool {
return d.Sign() == 0
}
// Modf sets integ to the integral part of d and frac to the fractional part
// such that d = integ+frac. If d is negative, both integ or frac will be either
// 0 or negative. integ.Exponent will be >= 0; frac.Exponent will be <= 0.
// Either argument can be nil, preventing it from being set.
func (d *Decimal) Modf(integ, frac *Decimal) {
if integ == nil && frac == nil {
return
}
neg := d.Negative
// No fractional part.
if d.Exponent > 0 {
if frac != nil {
frac.Negative = neg
frac.Exponent = 0
frac.Coeff.SetInt64(0)
}
if integ != nil {
integ.Set(d)
}
return
}
nd := d.NumDigits()
exp := -int64(d.Exponent)
// d < 0 because exponent is larger than number of digits.
if exp > nd {
if integ != nil {
integ.Negative = neg
integ.Exponent = 0
integ.Coeff.SetInt64(0)
}
if frac != nil {
frac.Set(d)
}
return
}
var tmpE BigInt
e := tableExp10(exp, &tmpE)
var icoeff *BigInt
if integ != nil {
icoeff = &integ.Coeff
integ.Exponent = 0
integ.Negative = neg
} else {
// This is the integ == nil branch, and we already checked if both integ and
// frac were nil above, so frac can never be nil in this branch.
icoeff = new(BigInt)
}
if frac != nil {
icoeff.QuoRem(&d.Coeff, e, &frac.Coeff)
frac.Exponent = d.Exponent
frac.Negative = neg
} else {
// This is the frac == nil, which means integ must not be nil since they both
// can't be due to the check above.
icoeff.Quo(&d.Coeff, e)
}
}
// Neg sets d to -x and returns d.
func (d *Decimal) Neg(x *Decimal) *Decimal {
d.Set(x)
if d.IsZero() {
d.Negative = false
} else {
d.Negative = !d.Negative
}
return d
}
// Abs sets d to |x| and returns d.
func (d *Decimal) Abs(x *Decimal) *Decimal {
d.Set(x)
d.Negative = false
return d
}
// Reduce sets d to x with all trailing zeros removed and returns d and the
// number of zeros removed.
func (d *Decimal) Reduce(x *Decimal) (*Decimal, int) {
if x.Form != Finite {
d.Set(x)
return d, 0
}
var nd int
neg := false
switch x.Sign() {
case 0:
nd = int(d.NumDigits())
d.SetInt64(0)
return d, nd - 1
case -1:
neg = true
}
d.Set(x)
// Use a uint64 for the division if possible.
if d.Coeff.IsUint64() {
i := d.Coeff.Uint64()
for i >= 10000 && i%10000 == 0 {
i /= 10000
nd += 4
}
for i%10 == 0 {
i /= 10
nd++
}
if nd != 0 {
d.Exponent += int32(nd)
d.Coeff.SetUint64(i)
d.Negative = neg
}
return d, nd
}
// Divide by 10 in a loop. In benchmarks of reduce0.decTest, this is 20%
// faster than converting to a string and trimming the 0s from the end.
var z, r BigInt
d.setBig(&z)
for {
z.QuoRem(&d.Coeff, bigTen, &r)
if r.Sign() == 0 {
d.Coeff.Set(&z)
nd++
} else {
break
}
}
d.Exponent += int32(nd)
return d, nd
}
const decimalSize = unsafe.Sizeof(Decimal{})
// Size returns the total memory footprint of d in bytes.
func (d *Decimal) Size() uintptr {
return decimalSize - bigIntSize + d.Coeff.Size()
}
// Value implements the database/sql/driver.Valuer interface. It converts d to a
// string.
func (d Decimal) Value() (driver.Value, error) {
return d.String(), nil
}
// Scan implements the database/sql.Scanner interface. It supports string,
// []byte, int64, float64.
func (d *Decimal) Scan(src interface{}) error {
switch src := src.(type) {
case []byte:
_, _, err := d.SetString(string(src))
return err
case string:
_, _, err := d.SetString(src)
return err
case int64:
d.SetInt64(src)
return nil
case float64:
_, err := d.SetFloat64(src)
return err
default:
return fmt.Errorf("could not convert %T to Decimal", src)
}
}
// UnmarshalText implements the encoding.TextUnmarshaler interface.
func (d *Decimal) UnmarshalText(b []byte) error {
_, _, err := d.SetString(string(b))
return err
}
// MarshalText implements the encoding.TextMarshaler interface.
func (d *Decimal) MarshalText() ([]byte, error) {
if d == nil {
return []byte("<nil>"), nil
}
return []byte(d.String()), nil
}
// NullDecimal represents a string that may be null. NullDecimal implements
// the database/sql.Scanner interface so it can be used as a scan destination:
//
// var d NullDecimal
// err := db.QueryRow("SELECT num FROM foo WHERE id=?", id).Scan(&d)
// ...
// if d.Valid {
// // use d.Decimal
// } else {
// // NULL value
// }
type NullDecimal struct {
Decimal Decimal
Valid bool // Valid is true if Decimal is not NULL
}
// Scan implements the database/sql.Scanner interface.
func (nd *NullDecimal) Scan(value interface{}) error {
if value == nil {
nd.Valid = false
return nil
}
nd.Valid = true
return nd.Decimal.Scan(value)
}
// Value implements the database/sql/driver.Valuer interface.
func (nd NullDecimal) Value() (driver.Value, error) {
if !nd.Valid {
return nil, nil
}
return nd.Decimal.Value()
}