Skip to content

coccocarmiano/MLPR2021-Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Folders Structure

|-|
  ├──|code 
  |  |
  |  ├── calibration.py             (Library Files)
  |  ├── classifiers.py             (Library Files)
  |  ├── dist.py                    (Generates Feature Distribution Plot)
  |  ├── FinalEvaluation.py         (Generates Evaluation Data for GMMs, Tied Covariance, RBF SVM, ...)
  |  ├── GMMOptimization.py         (Generates Optimized Parameters for GMMs)
  |  ├── KernelSVM_Normalized.py    (Generates Optimized Parameters for Normalized RBF SVM)    
  |  ├── KernelSVM.py               (Generates Optimized Parameters for RBF SVM)
  |  ├── LinearSVM.py               (Generates Optimized Parameters for Linear SVM)
  |  ├── LogReg.py                  (Generates Optimzed Parameters for Logistic Regression)  
  |  ├── LogRegQuad.py              (Generates Optimzed Parameters for Quadratic Logistic Regression)
  |  ├── model_evaluation.py        (Generates evalation data for logistic regressions and linear SVM)
  |  ├── model_validation.py        (Process generated data for optimized parameters)
  |  ├── MVG-FC-Optimization.py     (Generates Optimized Parameters for MVG Classifier)
  |  ├── MVG-NB-Optimization.py     (Generates Optimized Parameters for MVG Classifier)
  |  ├── MVG.py                     (Generates Optimized PCA for MVG Classifier)
  |  ├── MVG-TC-Optimization.py     (Generates Optimized Parameters for MVG Classifier)
  |  ├── PCA_Tests.py               (Tests to select good PCA values)
  |  ├── PolySVM_Normalized.py      (Generates Optimzed Parameters for Normalized Polynomial SVM)
  |  ├── PolySVM.py                 (Generates Optimzed Parameters for Polynomial SVM)
  |  ├── PolySVM_Whitened.py        (Generates Optimzed Parameters for WhitenedPolynomial SVM)
  |  ├── scatter.py                 (Generates scatter plots)
  |  └── utils.py                   (Library files)
  |
  ├── data                          (Datasets and scores computed by validating for GMMs, Kernel SVMs, Gaussian Classifiers)
  ├── img                           (Images for report)
  ├── report                        (Report source folder)
  └── trained                       (Scores computed by validating for linear SVMs and Logistic Regressions)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •