-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathTetradSearch.py
1094 lines (893 loc) · 48.6 KB
/
TetradSearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
## Provides a simple wrapper for many of the Tetrad searches that can be used
## either from Python or from R. The inputs are all pandas data frames
## and the outputs are endpoint-matrix-formatted graphs, also data frames. (In a
## future version, we may allow the outputs to be given other formats.)
import importlib.resources as importlib_resources
import jpype.imports
# print('cwd = ', os.getcwd())
# jar_path = importlib_resources.files('pytetrad').joinpath('resources', 'tetrad-current.jar')
# jar_path = str(jar_path)
# if not jpype.isJVMStarted():
# try:
# jpype.startJVM(jpype.getDefaultJVMPath(), classpath=[jar_path])
# except OSError:
# print("can't load jvm")
# pass
import pytetrad.tools.translate as tr
import edu.cmu.tetrad.search as ts
import edu.cmu.tetrad.data as td
import edu.cmu.tetrad.graph as gr
import edu.cmu.tetrad.graph.GraphSaveLoadUtils as gp
import java.lang as lang
import java.util as util
import edu.cmu.tetrad.algcomparison.algorithm.oracle.cpdag as cpdag
import edu.cmu.tetrad.algcomparison.algorithm.oracle.pag as pag
import edu.cmu.tetrad.algcomparison.algorithm.continuous.dag as dag
import edu.cmu.tetrad.algcomparison.algorithm.cluster as cluster
import edu.cmu.tetrad.algcomparison.score as score_
import edu.cmu.tetrad.algcomparison.independence as ind_
import edu.cmu.tetrad.search.utils as search_utils
import edu.cmu.tetrad.algcomparison.algorithm.other as alg_other
import java.io as io
from edu.cmu.tetrad.util import Params, Parameters
class TetradSearch:
"""
Represents a Tetrad-based search class for structure learning and related statistical scoring and testing
functionalities.
This class initializes and manages various scoring and independence test mechanisms based on configurations
passed via methods. It adapts Tetrad functionalities while offering Pythonic interaction. The usage entails
interacting with the attributes and methods to configure the scoring or testing criteria for causal discovery
and structure learning.
:ivar data: Data used for analysis, converted to Tetrad-compatible format.
:type data: object
:ivar score: The current scoring function in use.
:type score: object or None
:ivar TEST: The current independence test in use.
:type TEST: object or None
:ivar java: Accessor or object for Java-based dependencies, if any.
:type java: object or None
:ivar knowledge: Object to manage and store prior knowledge constraints.
:type knowledge: Knowledge
:ivar params: Parameters object for controlling scoring or testing properties.
:type params: Parameters
:ivar bootstrap_graphs: Stores results of any bootstrapped graph estimation run.
:type bootstrap_graphs: object or None
"""
def __init__(self, df):
self.data = tr.pandas_data_to_tetrad(df)
self.SCORE = None
self.TEST = None
self.MC_TEST = None
self.java = None
self.knowledge = td.Knowledge()
self.mc_knowledge = None
self.params = Parameters()
self.bootstrap_graphs = None
def __str__(self):
display = [self.SCORE, self.TEST, self.knowledge, self.java]
return "\n\n".join([str(item) for item in display])
# singularity_lambda: >= 0 Add lambda to matrix diagonals, < 0 Use pseudoinverse
def use_sem_bic(self, penalty_discount=2, structurePrior=0, sem_bic_rule=1, singularity_lambda=0.0):
self.params.set(Params.PENALTY_DISCOUNT, penalty_discount)
self.params.set(Params.SEM_BIC_STRUCTURE_PRIOR, structurePrior)
self.params.set(Params.SEM_BIC_RULE, sem_bic_rule)
self.params.set(Params.SINGULARITY_LAMBDA, singularity_lambda)
self.SCORE = score_.SemBicScore()
# singularity_lambda: >= 0 Add lambda to matrix diagonals, < 0 Use pseudoinverse
def use_ebic(self, gamma=0.8, precompute_covariances=True, singularity_lambda=0.0):
self.params.set(Params.EBIC_GAMMA, gamma)
self.params.set(Params.PRECOMPUTE_COVARIANCES, precompute_covariances)
self.params.set(Params.SINGULARITY_LAMBDA, singularity_lambda)
self.SCORE = score_.EbicScore()
def use_gic_score(self, penalty_discount=1, sem_gic_rule=4):
self.params.set(Params.SEM_GIC_RULE, sem_gic_rule)
self.params.set(Params.PENALTY_DISCOUNT_ZS, penalty_discount)
self.SCORE = score_.KimEtAlScores()
def use_mixed_variable_polynomial(self, structure_prior=0, f_degree=0, discretize=False):
self.params.set(Params.STRUCTURE_PRIOR, structure_prior)
self.params.set("fDegree", f_degree)
self.params.set(Params.DISCRETIZE), discretize
self.SCORE = score_.MVPBicScore()
# singularity_lambda: >= 0 Add lambda to matrix diagonals, < 0 Use pseudoinverse
def use_poisson_prior_score(self, poisson_lambda=2, precompute_covariances=True, singularity_lambda=0.0):
self.params.set(Params.PRECOMPUTE_COVARIANCES, precompute_covariances)
self.params.set(Params.POISSON_LAMBDA, poisson_lambda)
self.params.set(Params.SINGULARITY_LAMBDA, singularity_lambda)
self.SCORE = score_.PoissonPriorScore()
# singularity_lambda: >= 0 Add lambda to matrix diagonals, < 0 Use pseudoinverse
def use_zhang_shen_bound(self, risk_bound=0.2, singularity_lambda=0.0):
self.params.set(Params.ZS_RISK_BOUND, risk_bound)
self.params.set(Params.SINGULARITY_LAMBDA, singularity_lambda)
self.SCORE = score_.ZhangShenBoundScore()
def use_bdeu(self, sample_prior=10, structure_prior=0):
self.params.set(Params.PRIOR_EQUIVALENT_SAMPLE_SIZE, sample_prior)
self.params.set(Params.STRUCTURE_PRIOR, structure_prior)
self.SCORE = score_.BdeuScore()
def use_conditional_gaussian_score(self, penalty_discount=1, discretize=True, num_categories_to_discretize=3,
structure_prior=0):
self.params.set(Params.PENALTY_DISCOUNT, penalty_discount)
self.params.set(Params.STRUCTURE_PRIOR, structure_prior)
self.params.set(Params.DISCRETIZE, discretize)
self.params.set(Params.NUM_CATEGORIES_TO_DISCRETIZE, num_categories_to_discretize)
self.SCORE = score_.ConditionalGaussianBicScore()
# singularity_lambda: >= 0 Add lambda to matrix diagonals, < 0 Use pseudoinverse
def use_degenerate_gaussian_score(self, penalty_discount=1, structure_prior=0, singularity_lambda=0.0):
self.params.set(Params.PENALTY_DISCOUNT, penalty_discount)
self.params.set(Params.STRUCTURE_PRIOR, structure_prior)
self.params.set(Params.SINGULARITY_LAMBDA, singularity_lambda)
self.SCORE = score_.DegenerateGaussianBicScore()
# Uses covariance as a sufficient statistic
# singularity_lambda: >= 0 Add lambda to matrix diagonals, < 0 Use pseudoinverse
def use_basis_function_bic(self, truncation_limit=3, penalty_discount=2, singularity_lambda=0.0,
do_one_equation_only=False):
self.params.set(Params.TRUNCATION_LIMIT, truncation_limit)
self.params.set(Params.PENALTY_DISCOUNT, penalty_discount)
self.params.set(Params.SINGULARITY_LAMBDA, singularity_lambda)
self.params.set(Params.DO_ONE_EQUATION_ONLY, do_one_equation_only)
self.SCORE = score_.BasisFunctionBicScore()
# Full sample.
# singularity_lambda: >= 0 Add lambda to matrix diagonals, < 0 Use pseudoinverse
def use_basis_function_bic_fs(self, truncation_limit=3, penalty_discount=2, singularity_lambda=0.0,
do_one_equation_only=False):
self.params.set(Params.TRUNCATION_LIMIT, truncation_limit)
self.params.set(Params.PENALTY_DISCOUNT, penalty_discount)
self.params.set(Params.SINGULARITY_LAMBDA, singularity_lambda)
self.params.set(Params.DO_ONE_EQUATION_ONLY, do_one_equation_only)
self.SCORE = score_.BasisFunctionBicScoreTabular()
# Uses covariance as a sufficient statistic.
# singularity_lambda: >= 0 Add lambda to matrix diagonals, < 0 Use pseudoinverse
def use_basis_function_lrt(self, truncation_limit=3, alpha=0.01, use_for_mc=False, singularity_lambda=0.0,
do_one_equation_only=False):
self.params.set(Params.ALPHA, alpha)
self.params.set(Params.TRUNCATION_LIMIT, truncation_limit)
self.params.set(Params.SINGULARITY_LAMBDA, singularity_lambda)
self.params.set(Params.DO_ONE_EQUATION_ONLY, do_one_equation_only)
if use_for_mc:
self.MC_TEST = ind_.BasisFunctionLrt()
else:
self.TEST = ind_.BasisFunctionLrt()
# Full sample
# singularity_lambda: >= 0 Add lambda to matrix diagonals, < 0 Use pseudoinverse
def use_basis_function_lrt_fs(self, truncation_limit=3, alpha=0.01, use_for_mc=False, singularity_lambda=0.0,
do_one_equation_only=False):
self.params.set(Params.ALPHA, alpha)
self.params.set(Params.TRUNCATION_LIMIT, truncation_limit)
self.params.set(Params.SINGULARITY_LAMBDA, singularity_lambda)
self.params.set(Params.DO_ONE_EQUATION_ONLY, do_one_equation_only)
if use_for_mc:
self.MC_TEST = ind_.BasisFunctionLrtFullSample()
else:
self.TEST = ind_.BasisFunctionLrtFullSample()
# singularity_lambda: >= 0 Add lambda to matrix diagonals, < 0 Use pseudoinverse
def use_fisher_z(self, alpha=0.01, use_for_mc=False, singularity_lambda=0.0):
self.params.set(Params.ALPHA, alpha)
self.params.set(Params.SINGULARITY_LAMBDA, singularity_lambda)
if use_for_mc:
self.MC_TEST = ind_.FisherZ()
else:
self.TEST = ind_.FisherZ()
# This conflicts--to use a particular test like this, you should do the whole thing in JPype.
# # The supplied test should implement edu.cmu.tetrad.algcomparison.independence.IndependenceWrapper in Tetrad.
# def use_test(self, test, use_for_mc=False):
# if use_for_mc:
# self.MC_TEST = test
# else:
# self.TEST = test
# cell table type is 1 = AD Tree, 2 = Count Sample. (Optimization.)
def use_chi_square(self, min_count=1, alpha=0.01, cell_table_type=1, use_for_mc=False):
self.params.set(Params.ALPHA, alpha)
self.params.set(Params.MIN_COUNT_PER_CELL, min_count)
self.params.set(Params.CELL_TABLE_TYPE, cell_table_type)
if use_for_mc:
self.MC_TEST = ind_.ChiSquare()
else:
self.TEST = ind_.ChiSquare()
# cell table type is 1 = AD Tree, 2 = Count Sample. (Optimization)
def use_g_square(self, min_count=1, alpha=0.01, cell_table_type=1, use_for_mc=False):
self.params.set(Params.ALPHA, alpha)
self.params.set(Params.MIN_COUNT_PER_CELL, min_count)
self.params.set(Params.CELL_TABLE_TYPE, cell_table_type)
if use_for_mc:
self.MC_TEST = ind_.GSquare()
else:
self.TEST = ind_.GSquare()
def use_conditional_gaussian_test(self, alpha=0.01, discretize=True,
num_categories_to_discretize=3, use_for_mc=False):
self.params.set(Params.ALPHA, alpha)
self.params.set(Params.DISCRETIZE, discretize)
self.params.set(Params.NUM_CATEGORIES_TO_DISCRETIZE, num_categories_to_discretize)
self.TEST = ind_.ConditionalGaussianLrt()
if use_for_mc:
self.MC_TEST = ind_.ConditionalGaussianLrt()
else:
self.TEST = ind_.ConditionalGaussianLrt()
# singularity_lambda: >= 0 Add lambda to matrix diagonals, < 0 Use pseudoinverse
def use_degenerate_gaussian_test(self, alpha=0.01, use_for_mc=False, singularity_lambda=0.0):
self.params.set(Params.ALPHA, alpha)
self.params.set(Params.SINGULARITY_LAMBDA, singularity_lambda)
if use_for_mc:
self.MC_TEST = ind_.DegenerateGaussianLrt()
else:
self.TEST = ind_.DegenerateGaussianLrt()
def use_probabilistic_test(self, threshold=False, cutoff=0.5, prior_ess=10, use_for_mc=False):
self.params.set(Params.NO_RANDOMLY_DETERMINED_INDEPENDENCE, threshold)
self.params.set(Params.CUTOFF_IND_TEST, cutoff)
self.params.set(Params.PRIOR_EQUIVALENT_SAMPLE_SIZE, prior_ess)
if use_for_mc:
self.MC_TEST = ind_.ProbabilisticTest()
else:
self.TEST = ind_.ProbabilisticTest()
def use_kci(self, alpha=0.01, approximate=True, scaling_factor=1, num_bootstraps=5000, threshold=1e-3,
epsilon=1e-3, kernel_type=1, polyd=5, polyc=1, use_for_mc=False):
self.params.set(Params.KCI_USE_APPROXIMATION, approximate)
self.params.set(Params.ALPHA, alpha)
self.params.set(Params.SCALING_FACTOR, scaling_factor)
self.params.set(Params.KCI_NUM_BOOTSTRAPS, num_bootstraps)
self.params.set(Params.THRESHOLD_FOR_NUM_EIGENVALUES, threshold)
self.params.set(Params.KCI_EPSILON, epsilon)
self.params.set(Params.KERNEL_TYPE, kernel_type)
self.params.set(Params.POLYNOMIAL_DEGREE, polyd)
self.params.set(Params.POLYNOMIAL_CONSTANT, polyc)
if use_for_mc:
self.MC_TEST = ind_.Kci()
else:
self.TEST = ind_.Kci()
def use_cci(self, alpha=0.01, scaling_factor=2, num_basis_functions=3, basis_type=4,
basis_scale=0.0, use_for_mc=False):
self.params.set(Params.ALPHA, alpha)
self.params.set(Params.SCALING_FACTOR, scaling_factor)
self.params.set(Params.NUM_BASIS_FUNCTIONS, num_basis_functions)
self.params.set(Params.BASIS_TYPE, basis_type)
self.params.set(Params.BASIS_SCALE, basis_scale)
if use_for_mc:
self.MC_TEST = ind_.CciTest()
else:
self.TEST = ind_.CciTest()
def add_to_tier(self, tier, var_name):
self.knowledge.addToTier(lang.Integer(tier), lang.String(var_name))
def set_tier_forbidden_within(self, tier, forbiddenWithin=True):
self.knowledge.setTierForbiddenWithin(lang.Integer(tier), forbiddenWithin)
def set_forbidden(self, var_name_1, var_name_2):
self.knowledge.setForbidden(lang.String(var_name_1), lang.String(var_name_2))
def set_required(self, var_name_1, var_name_2):
self.knowledge.setRequired(lang.String(var_name_1), lang.String(var_name_2))
def set_knowledge(self, knowledge):
self.knowledge = knowledge
def clear_knowledge(self):
self.knowledge.clear()
def load_knowledge(self, path, use_for_mc=False):
"""
Loads knowledge from the specified file and sets it in the appropriate knowledge object (either
the main knowledge or the Monte Carlo (MC) knowledge) depending on the use_for_mc flag.
Note that knowledge for the algorithm is a different type of knowledge from what you use for the Markov checker.
Here is the doc for Markov checker knowledge: "Sets the knowledge object for the Markov checker. The knowledge
object should contain the tier knowledge for the Markov checker. The last tier contains the possible X and Y for
X _||_ Y | Z1,...,Zn, and the previous tiers contain the possible Z1,...,Zn for X _||_ Y | Z1,...,Zn.
Additional forbidden or required edges are ignored.
:param path: The file path to the knowledge file that contains prior constraints.
:type path: str
:param use_for_mc: If True, loads the knowledge into the Monte Carlo (MC) knowledge object;
otherwise, loads it into the main knowledge object.
:type use_for_mc: bool
:return: None
"""
if use_for_mc:
know_file = io.File(path)
know_delim = td.DelimiterType.WHITESPACE
self.mc_knowledge = td.SimpleDataLoader.loadKnowledge(know_file, know_delim, "#")
else:
know_file = io.File(path)
know_delim = td.DelimiterType.WHITESPACE
self.knowledge = td.SimpleDataLoader.loadKnowledge(know_file, know_delim, "#")
def check_knowledge(self):
X = [str(x) for x in self.knowledge.getVariables()]
Y = [str(y) for y in self.data.getVariableNames()]
return [x for x in X if x not in Y]
def print_knowledge(self):
print(self.knowledge)
def run_fges(self, symmetric_first_step=False, max_degree=-1, parallelized=False,
faithfulness_assumed=False):
alg = cpdag.Fges(self.SCORE)
alg.setKnowledge(self.knowledge)
self.params.set(Params.SYMMETRIC_FIRST_STEP, symmetric_first_step)
self.params.set(Params.MAX_DEGREE, max_degree)
self.params.set(Params.PARALLELIZED, parallelized)
self.params.set(Params.FAITHFULNESS_ASSUMED, faithfulness_assumed)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_fges_mb(self, targets="", max_degree=-1, trimming_style=3,
number_of_expansions=2, faithfulness_assumed=False):
alg = cpdag.FgesMb(self.SCORE)
alg.setKnowledge(self.knowledge)
self.params.set(Params.TARGETS, targets)
self.params.set(Params.FAITHFULNESS_ASSUMED, faithfulness_assumed)
self.params.set(Params.MAX_DEGREE, max_degree)
self.params.set(Params.TRIMMING_STYLE, trimming_style)
self.params.set(Params.NUMBER_OF_EXPANSIONS, number_of_expansions)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_boss(self, num_starts=1, use_bes=False, time_lag=0, use_data_order=True,
output_cpdag=True):
self.params.set(Params.USE_BES, use_bes)
self.params.set(Params.NUM_STARTS, num_starts)
self.params.set(Params.TIME_LAG, time_lag)
self.params.set(Params.USE_DATA_ORDER, use_data_order)
self.params.set(Params.OUTPUT_CPDAG, output_cpdag)
alg = cpdag.Boss(self.SCORE)
alg.setKnowledge(self.knowledge)
self.params.set(Params.NUM_STARTS, num_starts)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_restricted_boss(self, targets="", use_bes=False, num_starts=1,
allow_internal_randomness=True):
self.params.set(Params.TARGETS, targets)
self.params.set(Params.USE_BES, use_bes)
self.params.set(Params.NUM_STARTS, num_starts)
self.params.set(Params.ALLOW_INTERNAL_RANDOMNESS, allow_internal_randomness)
alg = cpdag.RestrictedBoss(self.SCORE)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
# Algorithm. This is the algorithm to use to calculate bootstrapped CPDAGs.
# Current options are PC Stable, FGES, BOSS, or Restricted BOSS. For large
# datasets, we recommend Restricted BOSS, which calculates variables with
# marginal effect on one of the targets and then runs BOSS over this restricted
# set.
# Results Output Path. A default is “cstar-out”, which will place result-files
# in a subdirectory of the current directory named path = “cstar-out”.[n], where
# n is the first index for which no such directory exists. If a directory already
# exists at the path, then any information available in path directory will be
# used to generate results in the path-.[n] directory.
# Number of Subsamples. CStaR finds CPDAGs over subsampled data of size n / 2; this
# specifies how many subsamples to use.
# Minimum effect size. This allows a shorter table to be produced. It this is set
# to a value m > 0, then only records with PI > m will be displayed.
# Target Names. A list of names of variables (comma or space separated) can be
# given that are considered possible effects. These will be excluded from the list
# of possible causes, which will be all other variables in the dataset.
# Top Bracket. The CStaR algorithm tries to find possible causes that regularly sort
# into the top set of variables by minimum IDA effect. This gives the number q of
# variables to include in the top bracket, where 1 <= q <= # possible causes.
# Parallelized. Yes, if the search should be parallelized, no if not. Default no.
def run_cstar(self, targets="", file_out_path="cstar-out", selection_min_effect=0.0,
num_subsamples=50, top_bracket=10, parallelized=False, cpdag_algorithm=4,
remove_effect_nodes=True, sample_style=1):
self.params.set(Params.SELECTION_MIN_EFFECT, selection_min_effect)
self.params.set(Params.NUM_SUBSAMPLES, num_subsamples)
self.params.set(Params.TARGETS, targets)
self.params.set(Params.TOP_BRACKET, top_bracket)
self.params.set(Params.PARALLELIZED, parallelized)
self.params.set(Params.CSTAR_CPDAG_ALGORITHM, cpdag_algorithm)
self.params.set(Params.FILE_OUT_PATH, file_out_path)
self.params.set(Params.REMOVE_EFFECT_NODES, remove_effect_nodes)
self.params.set(Params.SAMPLE_STYLE, sample_style)
alg = cpdag.Cstar(self.TEST, self.SCORE)
self.java = alg.search(self.data, self.params)
def run_sp(self):
alg = cpdag.Sp(self.SCORE)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
alg.setKnowledge(self.knowledge)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_grasp(self, covered_depth=4, singular_depth=1,
nonsingular_depth=1, ordered_alg=False,
raskutti_uhler=False, use_data_order=True,
num_starts=1):
self.params.set(Params.GRASP_DEPTH, covered_depth)
self.params.set(Params.GRASP_SINGULAR_DEPTH, singular_depth)
self.params.set(Params.GRASP_NONSINGULAR_DEPTH, nonsingular_depth)
self.params.set(Params.GRASP_ORDERED_ALG, ordered_alg)
self.params.set(Params.GRASP_USE_RASKUTTI_UHLER, raskutti_uhler)
self.params.set(Params.USE_DATA_ORDER, use_data_order)
self.params.set(Params.NUM_STARTS, num_starts)
alg = cpdag.Grasp(self.TEST, self.SCORE)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_pc(self, conflict_rule=1, depth=-1, stable_fas=True, guarantee_cpdag=False):
self.params.set(Params.CONFLICT_RULE, conflict_rule)
self.params.set(Params.DEPTH, depth)
self.params.set(Params.STABLE_FAS, stable_fas)
self.params.set(Params.GUARANTEE_CPDAG, guarantee_cpdag)
alg = cpdag.Pc(self.TEST)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_pc_max(self, conflict_rule=1, depth=-1, stable_fas=True, guarantee_cpdag=True):
self.params.set(Params.CONFLICT_RULE, conflict_rule)
self.params.set(Params.DEPTH, depth)
self.params.set(Params.STABLE_FAS, stable_fas)
self.params.set(Params.GUARANTEE_CPDAG, guarantee_cpdag)
alg = cpdag.PcMax(self.TEST)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_cpc(self, conflict_rule=1, depth=-1, stable_fas=True, guarantee_cpdag=False):
self.params.set(Params.CONFLICT_RULE, conflict_rule)
self.params.set(Params.DEPTH, depth)
self.params.set(Params.STABLE_FAS, stable_fas)
self.params.set(Params.GUARANTEE_CPDAG, guarantee_cpdag)
alg = cpdag.Cpc(self.TEST)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_pcmax(self, conflict_rule=1, depth=-1, use_heuristic=True, max_disc_path_length=-1,
stable_fas=True):
self.params.set(Params.CONFLICT_RULE, conflict_rule)
self.params.set(Params.DEPTH, depth)
self.params.set(Params.USE_MAX_P_ORIENTATION_HEURISTIC, use_heuristic)
self.params.set(Params.MAX_P_ORIENTATION_MAX_PATH_LENGTH, max_disc_path_length)
self.params.set(Params.STABLE_FAS, stable_fas)
alg = cpdag.PcMax(self.TEST)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_fci(self, depth=-1, stable_fas=True, max_disc_path_length=-1, complete_rule_set_used=True,
guarantee_pag=False):
self.params.set(Params.DEPTH, depth)
self.params.set(Params.STABLE_FAS, stable_fas)
self.params.set(Params.MAX_DISCRIMINATING_PATH_LENGTH, max_disc_path_length)
self.params.set(Params.COMPLETE_RULE_SET_USED, complete_rule_set_used)
self.params.set(Params.GUARANTEE_PAG, guarantee_pag)
alg = pag.Fci(self.TEST)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_rfci(self, depth=-1, stable_fas=True, max_disc_path_length=-1, complete_rule_set_used=True, ):
self.params.set(Params.DEPTH, depth)
self.params.set(Params.STABLE_FAS, stable_fas)
self.params.set(Params.MAX_DISCRIMINATING_PATH_LENGTH, max_disc_path_length)
self.params.set(Params.COMPLETE_RULE_SET_USED, complete_rule_set_used)
alg = pag.Rfci(self.TEST)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_cfci(self, depth=-1, max_disc_path_length=-1, complete_rule_set_used=True):
self.params.set(Params.DEPTH, depth)
self.params.set(Params.MAX_DISCRIMINATING_PATH_LENGTH, max_disc_path_length)
self.params.set(Params.COMPLETE_RULE_SET_USED, complete_rule_set_used)
alg = pag.Cfci(self.TEST)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
# This is GFCI with the possible d-sep step.
def run_gfci(self, depth=-1, max_degree=-1, max_disc_path_length=-1, complete_rule_set_used=True,
guarantee_pag=False):
self.params.set(Params.DEPTH, depth)
self.params.set(Params.MAX_DEGREE, max_degree)
self.params.set(Params.COMPLETE_RULE_SET_USED, complete_rule_set_used),
self.params.set(Params.MAX_DISCRIMINATING_PATH_LENGTH, max_disc_path_length)
self.params.set(Params.GUARANTEE_PAG, guarantee_pag)
alg = pag.Gfci(self.TEST, self.SCORE)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
# This is GFCI without the possible d-sep step
def run_fges_fci(self, depth=-1, max_degree=-1, max_disc_path_length=-1, complete_rule_set_used=True,
guarantee_pag=False):
self.params.set(Params.DEPTH, depth)
self.params.set(Params.MAX_DEGREE, max_degree)
self.params.set(Params.COMPLETE_RULE_SET_USED, complete_rule_set_used),
self.params.set(Params.MAX_DISCRIMINATING_PATH_LENGTH, max_disc_path_length)
self.params.set(Params.GUARANTEE_PAG, guarantee_pag)
alg = pag.Gfci(self.TEST, self.SCORE)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_boss_fci(self, depth=-1, max_disc_path_length=-1, complete_rule_set_used=True,
guarantee_pag=False):
self.params.set(Params.DEPTH, depth)
self.params.set(Params.COMPLETE_RULE_SET_USED, complete_rule_set_used),
self.params.set(Params.MAX_DISCRIMINATING_PATH_LENGTH, max_disc_path_length)
self.params.set(Params.GUARANTEE_PAG, guarantee_pag)
alg = pag.BossFci(self.TEST, self.SCORE)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_fcit(self, num_starts=1, max_blocking_path_length=5, depth=5, max_disc_path_length=5,
guarantee_pag=True):
# BOSS
self.params.set(Params.NUM_STARTS, num_starts)
# FCIT
self.params.set(Params.MAX_BLOCKING_PATH_LENGTH, max_blocking_path_length)
self.params.set(Params.DEPTH, depth)
self.params.set(Params.MAX_DISCRIMINATING_PATH_LENGTH, max_disc_path_length)
self.params.set(Params.GUARANTEE_PAG, guarantee_pag)
alg = pag.Fcit(self.TEST, self.SCORE)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_grasp_fci(self, depth=-1, stable_fas=True,
max_disc_path_length=-1,
complete_rule_set_used=True,
covered_depth=4, singular_depth=1,
nonsingular_depth=1, ordered_alg=False,
raskutti_uhler=False, use_data_order=True,
num_starts=1, guarantee_pag=False):
# GRaSP
self.params.set(Params.GRASP_DEPTH, covered_depth)
self.params.set(Params.GRASP_SINGULAR_DEPTH, singular_depth)
self.params.set(Params.GRASP_NONSINGULAR_DEPTH, nonsingular_depth)
self.params.set(Params.GRASP_ORDERED_ALG, ordered_alg)
self.params.set(Params.GRASP_USE_RASKUTTI_UHLER, raskutti_uhler)
self.params.set(Params.USE_DATA_ORDER, use_data_order)
self.params.set(Params.NUM_STARTS, num_starts)
self.params.set(Params.GUARANTEE_PAG, guarantee_pag)
# FCI
self.params.set(Params.DEPTH, depth)
# self.params.set(Params.FAS_HEURISTIC, fas_heuristic)
self.params.set(Params.STABLE_FAS, stable_fas)
self.params.set(Params.MAX_DISCRIMINATING_PATH_LENGTH, max_disc_path_length)
self.params.set(Params.COMPLETE_RULE_SET_USED, complete_rule_set_used)
alg = pag.GraspFci(self.TEST, self.SCORE)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_spfci(self, max_disc_path_length=-1, complete_rule_set_used=True, depth=-1,
guarantee_pag=False):
self.params.set(Params.MAX_DISCRIMINATING_PATH_LENGTH, max_disc_path_length)
self.params.set(Params.COMPLETE_RULE_SET_USED, complete_rule_set_used)
self.params.set(Params.DEPTH, depth)
self.params.set(Params.GUARANTEE_PAG, guarantee_pag)
alg = pag.SpFci(self.TEST, self.SCORE)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_ica_lingam(self, ica_a=1.1, ica_max_iter=5000, ica_tolerance=1e-8, threshold_b=0.1):
self.params.set(Params.FAST_ICA_A, ica_a)
self.params.set(Params.FAST_ICA_MAX_ITER, ica_max_iter)
self.params.set(Params.FAST_ICA_TOLERANCE, ica_tolerance)
self.params.set(Params.THRESHOLD_B, threshold_b)
alg = dag.IcaLingam()
self.java = alg.search(self.data, self.params)
self.bhat = alg.getBHat()
self.bootstrap_graphs = alg.getBootstrapGraphs()
## Returns the b-hat from the ICA-LiNGAM algorithm as a numpy array.
def get_bhat(self):
return tr.tetrad_matrix_to_pandas(self.bhat, self.data.getVariableNames())
def run_ica_lingd(self, ica_a=1.1, ica_max_iter=5000, ica_tolerance=1e-8, threshold_b=0.1, threshold_w=0.1):
self.params.set(Params.FAST_ICA_A, ica_a)
self.params.set(Params.FAST_ICA_MAX_ITER, ica_max_iter)
self.params.set(Params.FAST_ICA_TOLERANCE, ica_tolerance)
self.params.set(Params.THRESHOLD_B, threshold_b)
self.params.set(Params.THRESHOLD_W, threshold_w)
alg = dag.IcaLingD()
self.java = alg.search(self.data, self.params)
self.unstable_bhats = alg.getUnstableBHats()
self.stable_bhats = alg.getStableBHats()
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_fask(self, alpha=0.05, depth=-1, fask_delta=-0.3, left_right_rule=1, skew_edge_threshold=0.3):
self.params.set(Params.ALPHA, alpha)
self.params.set(Params.DEPTH, depth)
self.params.set(Params.FASK_DELTA, fask_delta)
self.params.set(Params.FASK_LEFT_RIGHT_RULE, left_right_rule)
self.params.set(Params.SKEW_EDGE_THRESHOLD, skew_edge_threshold)
alg = dag.Fask(self.SCORE)
alg.setKnowledge(self.knowledge)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_fofc(self, alpha=0.001, penalty_discount=2.0, tetrad_test=1,
include_structure_model=True, precompute_covariances=True, include_all_nodes=False):
"""
Executes the FOFC (Fast Orientation of Factor Causal) clustering algorithm with the specified
parameters and data provided to the class instance. This method sets up necessary configurations,
initializes FOFC, and runs the clustering process based on user inputs.
:param alpha: The significance level used in the FOFC algorithm. Determines the threshold for
statistical tests during clustering.
:type alpha: float
:param penalty_discount: Regulates the penalty applied during the clustering process for
handling score-based evaluations.
:type penalty_discount: float
:param tetrad_test: Specifies the tetrad test to be applied in the algorithm. This governs
statistical test variations in identifying tetrad relations. 1 = CCA, 2 = Bollen-Ting,
3 = Wishart
:type tetrad_test: int
:param include_structure_model: Determines whether the structural model should be considered
during the clustering process. This applies Mimbuild.
:type include_structure_model: bool
:param precompute_covariances: If True, precomputes covariance matrices to optimize the algorithm's
performance during execution.
:type precompute_covariances: bool
:param include_all_nodes: If True, all variables are included in the returned graph; if
false, only clustered variables. (Default = false)
:type include_all_nodes: boolean
:rtype: A graph indicating clusters
"""
# Set algorithm parameters in the Params object
self.params.set(Params.ALPHA, alpha)
self.params.set(Params.PENALTY_DISCOUNT, penalty_discount)
self.params.set(Params.TETRAD_TEST_FOFC, tetrad_test)
self.params.set(Params.INCLUDE_STRUCTURE_MODEL, include_structure_model)
self.params.set(Params.INCLUDE_ALL_NODES, include_all_nodes)
self.params.set(Params.PRECOMPUTE_COVARIANCES, precompute_covariances)
# Initialize the FOFC clustering algorithm
alg = cluster.Fofc()
# Run the search algorithm using the data and specified parameters
self.java = alg.search(self.data, self.params)
def run_bpc(self, alpha=0.001, penalty_discount=2.0, check_type=3,
include_structure_model=True, precompute_covariances=True):
"""
Executes the BPC (Bayesian Profile Clustering) algorithm using the specified
parameters. The function configures algorithm parameters, initializes the BPC
clustering algorithm, and performs the search process using the provided data
and configured options.
:param alpha: Significance level parameter used in the algorithm.
:type alpha: float
:param penalty_discount: Discounting factor for penalization in the algorithm.
:type penalty_discount: float
:param check_type: 1 = Significance, 2 = Clique (default), 3 = None
:type check_type: int
:param include_structure_model: Specifies whether to include structural model
considerations during computation.
:type include_structure_model: bool
:param precompute_covariances: Specifies whether to precompute covariance
matrices for efficiency in calculations.
:type precompute_covariances: bool
:return: Returns a graph indicating clusters
:rtype: object
"""
# Set algorithm parameters in the Params object
self.params.set(Params.ALPHA, alpha)
self.params.set(Params.PENALTY_DISCOUNT, penalty_discount)
self.params.set(Params.INCLUDE_STRUCTURE_MODEL, include_structure_model)
self.params.set(Params.CHECK_TYPE, check_type)
self.params.set(Params.PRECOMPUTE_COVARIANCES, precompute_covariances)
# Initialize the BPC clustering algorithm
alg = cluster.Bpc()
# Run the search algorithm using the data and specified parameters
self.java = alg.search(self.data, self.params)
def run_factor_analysis(self, fa_threshold=0.001, num_factors=2.0, use_varimax=True,
convergence_threshold=0.001):
"""
Run factor analysis using specified parameters and a predefined dataset.
This method initializes and configures the factor analysis algorithm with the
provided parameter values and executes it using the given data and parameter
configuration. Factor analysis is used to identify potential underlying
factors that may explain the observed relationships among variables.
:param fa_threshold: Threshold for factor analysis convergence criterion.
:param num_factors: The number of factors to extract during analysis.
:param use_varimax: Flag indicating whether to apply Varimax rotation to the
extracted factors.
:param convergence_threshold: Minimum threshold for algorithm convergence.
:return: None
"""
# Set algorithm parameters in the Params object
self.params.set("fa_threshold", fa_threshold)
self.params.set("numFactors", num_factors)
self.params.set("useVarimax", use_varimax)
self.params.set("convergenceThreshold", convergence_threshold)
# Initialize the BPC clustering algorithm
alg = alg_other.FactorAnalysis()
# Run the search algorithm using the data and specified parameters
self.java = alg.search(self.data, self.params)
## Returns the unstable b-hats from the ICA-LiNG-D algorithm as a list of numpy arrays.
def get_unstable_bhats(self):
list_of_matrices = []
for i in range(self.unstable_bhats.size()):
array = self.unstable_bhats.get(i)
m = tr.tetrad_matrix_to_pandas(array, self.data.getVariableNames())
list_of_matrices.append(m)
return list_of_matrices
## Returns the stable b-hats from the ICA-LiNG-D algorithm as a list of numpy arrays.
def get_stable_bhats(self):
list_of_matrices = []
for i in range(self.stable_bhats.size()):
array = self.stable_bhats.get(i)
m = tr.tetrad_matrix_to_pandas(array, self.data.getVariableNames())
list_of_matrices.append(m)
return list_of_matrices
def run_ccd(self, depth=-1, apply_r1=True):
if not self.knowledge.isEmpty():
print("CCD does not use knowledge.")
return
self.params.set(Params.DEPTH, depth)
self.params.set(Params.APPLY_R1, apply_r1)
alg = pag.Ccd(self.TEST)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_svar_fci(self, penalty_discount=2):
num_lags = 2
lagged_data = ts.TimeSeriesUtils.createLagData(self.data, num_lags)
ts_test = ts.IndTestFisherZ(lagged_data, 0.01)
ts_score = ts.SemBicScore(lagged_data)
ts_score.setPenaltyDiscount(penalty_discount)
svar_fci = ts.SvarFci(ts_test)
svar_fci.setKnowledge(lagged_data.getKnowledge())
self.java = svar_fci.search()
# self.bootstrap_graphs = svar_fci.getBootstrapGraphs()
def run_direct_lingam(self):
alg = dag.DirectLingam(self.SCORE)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_dagma(self, dagma_lambda=0.05, w_threshold=0.1, cpdag=True):
alg = dag.Dagma()
self.params.set(Params.LAMBDA1, dagma_lambda)
self.params.set(Params.W_THRESHOLD, w_threshold)
self.params.set(Params.CPDAG, cpdag)
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_pc_lingam(self):
alg = dag.PcLingam()
self.java = alg.search(self.data, self.params)
self.bootstrap_graphs = alg.getBootstrapGraphs()
def run_svar_gfci(self, penalty_discount=2):
num_lags = 2
lagged_data = ts.utils.TsUtils.createLagData(self.data, num_lags)
ts_test = ts.test.IndTestFisherZ(lagged_data, 0.01)
ts_score = ts.score.SemBicScore(lagged_data, True)
ts_score.setPenaltyDiscount(penalty_discount)
svar_fci = ts.SvarGfci(ts_test, ts_score)
svar_fci.setKnowledge(lagged_data.getKnowledge())
svar_fci.setVerbose(True)
self.java = svar_fci.search()
# self.bootstrap_graphs = svar_fci.getBootstrapGraphs()
def run_gango(self, score, data):
fges_graph = TetradSearch.run_fges(score)
datasets = util.ArrayList()
datasets.add(data)
rskew = ts.Lofs2(fges_graph, datasets)
rskew.setKnowledge(self.knowledge)
rskew.setRule(ts.Lofs2.Rule.RSkew)
gango_graph = rskew.orient()
return gango_graph
# Set numberResampling to 0 to turn off bootstrapping.
def set_bootstrapping(self, numberResampling=0, percent_resample_size=100, add_original=True,
with_replacement=True, resampling_ensemble=1, seed=-1):
self.params.set(Params.NUMBER_RESAMPLING, numberResampling)
self.params.set(Params.PERCENT_RESAMPLE_SIZE, percent_resample_size)
self.params.set(Params.ADD_ORIGINAL_DATASET, add_original)
self.params.set(Params.RESAMPLING_WITH_REPLACEMENT, with_replacement)
self.params.set(Params.RESAMPLING_ENSEMBLE, resampling_ensemble)
self.params.set(Params.SEED, seed)
def set_data(self, data):
self.data = tr.pandas_data_to_tetrad(data)
def set_verbose(self, verbose):
self.params.set(Params.VERBOSE, verbose)
def set_time_lag(self, time_lag=0):
self.params.set(Params.TIME_LAG, time_lag)
def get_data(self):
return self.data
def get_verbose(self):
return self.params.getBoolean(Params.VERBOSE)
def get_knowledge(self):
return self.knowledge
def get_java(self):
return self.java
def get_string(self, java=None):
if (java == None):
return lang.String @ self.java.toString()
else:
lang.String @ java.toString()
def get_dag_string(self, java=None):
if (java == None):
dag = gr.GraphTransforms.dagFromCpdag(self.java)
return lang.String @ dag.toString()
else:
dag = gr.GraphTransforms.dagFromCpdag(java)
return lang.String @ dag.toString()
def get_dag_java(self, java=None):
if (java == None):
dag = gr.GraphTransforms.dagFromCpdag(self.java)
return dag
else:
dag = gr.GraphTransforms.dagFromCpdag(java)
return dag
def get_causal_learn(self, java=None):
if (java == None):
return tr.tetrad_graph_to_causal_learn(self.java)
else:
tr.tetrad_graph_to_causal_learn(java)
def get_graph_to_matrix(self, java=None, nullEpt=0, circleEpt=1, arrowEpt=2, tailEpt=3):
if (java == None):
return tr.graph_to_matrix(self.java, nullEpt, circleEpt, arrowEpt, tailEpt)
else:
tr.graph_to_matrix(java)
def get_dot(self, java=None):
if (java == None):
return str(gp.graphToDot(self.java))
else:
return str(gp.graphToDot(java))
def get_xml(self, java=None):
if (java == None):
return str(gp.graphToXml(self.java))
else:
return str(gp.graphToXml(self.java))
def get_lavaan(self, java=None):
if (java == None):
return gp.graphToLavaan(self.java)
else:
return gp.graphToLavaan(java)
def bootstrap_graph(self, index):
i = lang.Integer(index).intValue()
if i < 0 or i > len(self.bootstrap_graphs):
raise ValueError("index out of bounds (0-indexed)")
return self.bootstrap_graphs[i]
def bootstrap_dot(self, index):
i = lang.Integer(index).intValue()
if i < 0 or i > len(self.bootstrap_graphs):
raise ValueError("index out of bounds")
java = self.bootstrap_graphs[i]
return str(gp.graphToDot(java))
def is_legal_pag(self, graph):
return search_utils.GraphSearchUtils.isLegalPag(graph).isLegalPag()
def is_legal_pag_reason(self, graph):
print(search_utils.GraphSearchUtils.isLegalPag(graph).getReason())
def all_subsets_independence_facts(self, graph):
msep = (ts.MarkovCheck(graph, ts.test.IndTestFisherZ(self.data, 0.01), ts.ConditioningSetType.LOCAL_MARKOV)
.getAllSubsetsIndependenceFacts().getMsep())
facts = []
for i in range(0, msep.size()):
fact = msep.get(i)
x = fact.getX().toString()
y = fact.getY().toString()
zlist = util.ArrayList(fact.getZ())
_fact = []