-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathsmooth.py
493 lines (424 loc) · 20.4 KB
/
smooth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
"""Smoother utility.
This file contains the smoothing utility functions. We have a number of
possible smoothers to choose from: windowed average, local weighted regression,
and a causal Savitzky-Golay filter.
Code is courtesy of Dmitry Shemetov, Maria Jahja, and Addison Hu.
These smoothers are all functions that take a 1D numpy array and return a smoothed
1D numpy array of the same length (with a few np.nans in the beginning). See the
docstrings for details.
"""
from typing import Union
import warnings
import numpy as np
import pandas as pd
class Smoother: # pylint: disable=too-many-instance-attributes
"""Smoother class.
This is the smoothing utility class. This class holds the parameter settings for its smoother
methods and provides reasonable defaults. Basic usage can be found in the examples below.
The smoother function takes numpy arrays or pandas Series as input, expecting the values to be
on a regularly-spaced time grid. NANs are ok, as long as the array does not begin with a NAN.
The rest of the NANs will be handled via imputation by default, though this can be turned off.
Parameters
----------
smoother_name: {'savgol', 'moving_average', 'identity', 'left_gauss_linear'}
This variable specifies the smoother. We have four smoothers, currently:
* 'savgol' or a Savtizky-Golay smoother (default)
* 'moving_average' or a moving window average smoother
* 'identity' or the trivial smoother (no smoothing)
* 'left_gauss_linear' or a Gaussian-weight linear regression smoother
Descriptions of the smoothers are available in the doc strings. Full mathematical
details are in: https://github.com/cmu-delphi/covidcast-modeling/ in the folder
'indicator_smoother'.
poly_fit_degree: int
A parameter for the 'savgol' smoother which sets the degree of the polynomial fit.
window_length: int
The length of the fitting window for 'savgol' and the averaging window 'moving_average'.
This value is in the units provided by the data, which are likely to be days for Delphi.
Note that if window_length is smaller than the length of the signal, then only the
imputation method is run on the signal.
gaussian_bandwidth: float or None
If float, all regression is done with Gaussian weights whose variance is
half the gaussian_bandwidth. If None, performs unweighted regression. (Applies
to 'left_gauss_linear' and 'savgol'.)
Here are some reference values (the given bandwidth produces a 95% weighting on
the data of length time window into the past):
time window | bandwidth
7 36
14 144
21 325
28 579
35 905
42 1303
impute: {'savgol', 'zeros', None}
If 'savgol' (default), will fill nan values with a savgol fit on the largest available time
window prior (up to window_length). If 'zeros', will fill nan values with zeros.
If None, leaves the nans in place.
minval: float or None
The smallest value to allow in a signal. If None, there is no smallest value.
Currently only implemented for 'left_gauss_linear'. This should probably not be in the scope
of the smoothing utility.
boundary_method: {'shortened_window', 'identity', 'nan'}
Determines how the 'savgol' method handles smoothing at the (left) boundary, where the past
data length is shorter than the window_length parameter. If 'shortened_window', it uses the
maximum window available; at the very edge (generally up to poly_fit_degree) it keeps the
same value as the raw signal. If 'identity', it just keeps the raw signal. If 'nan', it
writes nans. For the other smoothing methods, 'moving_average' writes nans and
'left_gauss_linear' uses a shortened window.
Methods
----------
smooth: np.ndarray or pd.Series
Takes a 1D signal and returns a smoothed version.
The input and the output have the same length and type.
Example Usage
-------------
Example 1. Apply a rolling average smoother with a window of length 10.
>>> smoother = Smoother(smoother_name='moving_average', window_length=10)
>>> smoothed_signal = smoother.smooth(signal)
Example 2. Smooth a dataframe column.
>>> smoother = Smoother(smoother_name='savgol')
>>> df[col] = df[col].transform(smoother.smooth)
Example 3. Apply a rolling weighted average smoother, with 95% weight on the recent 2 weeks and
a sharp cutoff after 4 weeks.
>>> smoother = Smoother(smoother_name='savgol', poly_fit_degree=0, window_length=28,
gaussian_bandwidth=144)
>>> smoothed_signal = smoother.smooth(signal)
Example 4. Apply a local linear regression smoother (essentially equivalent to
`left_gauss_linear`), with 95% weight on the recent week and a sharp
cutoff after 3 weeks.
>>> smoother = Smoother(smoother_name='savgol', poly_fit_degree=1, window_length=21,
gaussian_bandwidth=36)
>>> smoothed_signal = smoother.smooth(signal)
Example 5. Apply the identity function (simplifies code that iterates through smoothers _and_
expects a copy of the raw data).
>>> smoother = Smoother(smoother_name='identity')
>>> smoothed_signal = smoother.smooth(signal)
"""
def __init__(
self,
smoother_name="savgol",
poly_fit_degree=2,
window_length=28,
gaussian_bandwidth=144, # a ~2 week window
impute_method=None,
minval=None,
boundary_method="shortened_window",
):
"""See class docstring."""
self.smoother_name = smoother_name
self.poly_fit_degree = poly_fit_degree
self.window_length = window_length
self.gaussian_bandwidth = gaussian_bandwidth
self.impute_method = self._select_imputer(impute_method, self.smoother_name)
self.minval = minval
self.boundary_method = boundary_method
valid_smoothers = {"savgol", "left_gauss_linear", "moving_average", "identity"}
valid_impute_methods = {"savgol", "zeros", "identity"}
valid_boundary_methods = {"shortened_window", "identity", "nan"}
if self.smoother_name not in valid_smoothers:
raise ValueError("Invalid smoother_name given.")
if self.impute_method not in valid_impute_methods:
raise ValueError("Invalid impute_method given.")
if self.boundary_method not in valid_boundary_methods:
raise ValueError("Invalid boundary_method given.")
if self.window_length <= 1:
raise ValueError("Window length is too short.")
if smoother_name == "savgol":
# The polynomial fitting is done on a past window of size window_length
# including the current day value.
self.coeffs = self.savgol_coeffs(
-self.window_length + 1, 0, self.poly_fit_degree
)
else:
self.coeffs = None
def _select_imputer(self, impute_method, smoother_name):
if impute_method is None and smoother_name != "identity":
return "savgol"
if impute_method is None and smoother_name == "identity":
return "identity"
return impute_method
def smooth(
self, signal: Union[np.ndarray, pd.Series], impute_order=2
) -> Union[np.ndarray, pd.Series]:
"""Apply a smoother to a signal.
The major workhorse smoothing function. Imputes the nans and then applies
a smoother to the signal.
Parameters
----------
signal: np.ndarray or pd.Series
A 1D signal to be smoothed.
impute_order: int
The polynomial order of the fit used for imputation. By default, this is set to
2.
Returns
----------
signal_smoothed: np.ndarray or pd.Series
A smoothed 1D signal. Returns an array of the same type and length as
the input.
"""
# If all nans, pass through
if np.all(np.isnan(signal)):
return signal
is_pandas_series = isinstance(signal, pd.Series)
pandas_index = signal.index if is_pandas_series else None
signal = signal.to_numpy() if is_pandas_series else signal
# Find where the first non-nan value is located and truncate the initial nans
ix = np.where(~np.isnan(signal))[0][0]
signal = signal[ix:]
# Don't smooth in certain edge cases
if len(signal) < self.poly_fit_degree or len(signal) == 1:
signal_smoothed = signal.copy()
else:
# Impute
signal = self.impute(signal, impute_order=impute_order)
# Smooth
signal_smoothed = self._select_smoother()(signal)
# Append the nans back, since we want to preserve length
signal_smoothed = np.hstack([np.nan * np.ones(ix), signal_smoothed])
# Convert back to pandas if necessary
if is_pandas_series:
signal_smoothed = pd.Series(signal_smoothed)
signal_smoothed.index = pandas_index
return signal_smoothed
def _select_smoother(self):
"""Select a smoothing method based on the smoother type."""
if self.smoother_name == "savgol":
return self.savgol_smoother
if self.smoother_name == "left_gauss_linear":
return self.left_gauss_linear_smoother
if self.smoother_name == "moving_average":
return self.moving_average_smoother
if self.smoother_name == "identity":
return lambda x: x
raise ValueError(f"invalid smoother {self.smoother_name}")
def impute(self, signal, impute_order=2):
"""Impute the nan values in the signal.
See the class docstring for an explanation of the impute methods.
Parameters
----------
signal: np.ndarray
1D signal to be imputed.
impute_order: int
The polynomial order of the fit used for imputation.
Returns
-------
imputed_signal: np.ndarray
Imputed signal.
"""
if self.impute_method == "savgol":
# We cannot impute if the signal begins with a NaN (there is no information to go by).
# To preserve input-output array lengths, this util will not drop NaNs for you.
if np.isnan(signal[0]):
raise ValueError("The signal should not begin with a nan value.")
imputed_signal = self.savgol_impute(signal, impute_order)
elif self.impute_method == "zeros":
imputed_signal = np.nan_to_num(signal)
elif self.impute_method == "identity":
imputed_signal = np.copy(signal)
return imputed_signal
def moving_average_smoother(self, signal):
"""Compute a moving average on the signal.
Parameters
----------
signal: np.ndarray
Input array.
Returns
-------
signal_smoothed: np.ndarray
An array with the same length as arr, but the first window_length-1
entries are np.nan.
"""
if not isinstance(self.window_length, int):
raise ValueError("k must be int.")
signal_padded = np.append(np.nan * np.ones(self.window_length - 1), signal)
signal_smoothed = (
np.convolve(
signal_padded, np.ones(self.window_length, dtype=int), mode="valid"
)
/ self.window_length
)
return signal_smoothed
def left_gauss_linear_smoother(self, signal):
"""Smooth the y-values using a local linear regression with Gaussian weights.
DEPRECATED: This method is available to help sanity check the 'savgol' method.
Use 'savgol' with poly_fit_degree=1 and the appropriate gaussian_bandwidth instead.
At each time t, we use the data from times 1, ..., t-dt, weighted
using the Gaussian kernel, to produce the estimate at time t.
Parameters
----------
signal: np.ndarray
A 1D signal.
Returns
----------
signal_smoothed: np.ndarray
A smoothed 1D signal.
"""
warnings.warn(
"Use the savgol smoother with poly_fit_degree=1 instead.",
DeprecationWarning,
)
n = len(signal)
signal_smoothed = np.zeros_like(signal)
# A is the regression design matrix
A = np.vstack([np.ones(n), np.arange(n)]).T
for idx in range(n):
weights = np.exp(-((np.arange(idx + 1) - idx) ** 2) / self.gaussian_bandwidth)
AwA = np.dot(A[: (idx + 1), :].T * weights, A[: (idx + 1), :])
Awy = np.dot(A[: (idx + 1), :].T * weights, signal[: (idx + 1)].reshape(-1, 1))
try:
beta = np.linalg.solve(AwA, Awy)
signal_smoothed[idx] = np.dot(A[: (idx + 1), :], beta)[-1]
except np.linalg.LinAlgError:
signal_smoothed[idx] = (
signal[idx] # pylint: disable=using-constant-test
if self.impute
else np.nan
)
if self.minval is not None:
signal_smoothed[signal_smoothed <= self.minval] = self.minval
return signal_smoothed
def savgol_predict(self, signal, poly_fit_degree, nr):
"""Predict a single value using the savgol method.
Fits a polynomial through the values given by the signal and returns the value
of the polynomial at the right-most signal-value. More precisely, for a signal of length
n, fits a poly_fit_degree polynomial through the points signal[-n+1+nr], signal[-n+2+nr],
..., signal[nr], and returns the evaluation of the polynomial at signal[0]. Hence, if
nr=0, then the last value of the signal is smoothed, and if nr=-1, then the value after
the last signal value is anticipated.
Parameters
----------
signal: np.ndarray
A 1D signal to smooth.
poly_fit_degree: int
The degree of the polynomial fit.
nr: int
An integer that determines the position of the predicted value relative to the signal.
Returns
----------
predicted_value: float
The anticipated value that comes after the end of the signal based on a polynomial fit.
"""
coeffs = self.savgol_coeffs(-len(signal) + 1 + nr, nr, poly_fit_degree)
predicted_value = signal @ coeffs
return predicted_value
def savgol_coeffs(self, nl, nr, poly_fit_degree):
"""Solve for the Savitzky-Golay coefficients.
Solves for the Savitzky-Golay coefficients. The coefficients c_i
give a filter so that
y = sum_{i=-{n_l}}^{n_r} c_i x_i
is the value at 0 (thus the constant term) of the polynomial fit
through the points {x_i}. The coefficients are c_i are calculated as
c_i = ((A.T @ A)^(-1) @ (A.T @ e_i))_0
where A is the design matrix of the polynomial fit and e_i is the standard
basis vector i. This is currently done via a full inversion, which can be
optimized.
Parameters
----------
nl: int
The left window bound for the polynomial fit, inclusive.
nr: int
The right window bound for the polynomial fit, inclusive.
poly_fit_degree: int
The degree of the polynomial to be fit.
Returns
----------
coeffs: np.ndarray
A vector of coefficients of length nr - nl + 1 that determines the savgol
convolution filter.
"""
if nl >= nr:
raise ValueError("The left window bound should be less than the right.")
if nr > 0:
warnings.warn("The filter is no longer causal.")
A = np.vstack([np.arange(nl, nr + 1) ** j for j in range(poly_fit_degree + 1)]).T
if self.gaussian_bandwidth is None:
mat_inverse = np.linalg.inv(A.T @ A) @ A.T
else:
weights = np.exp(-((np.arange(nl, nr + 1)) ** 2) / self.gaussian_bandwidth)
mat_inverse = np.linalg.inv((A.T * weights) @ A) @ (A.T * weights)
window_length = nr - nl + 1
coeffs = np.zeros(window_length)
for i in range(window_length):
basis_vector = np.zeros(window_length)
basis_vector[i] = 1.0
coeffs[i] = (mat_inverse @ basis_vector)[0]
return coeffs
def savgol_smoother(self, signal):
"""Smooth signal with the savgol smoother.
Returns a convolution of the 1D signal with the Savitzky-Golay coefficients, respecting
boundary effects. For an explanation of boundary effects methods, see the class docstring.
Parameters
----------
signal: np.ndarray
A 1D signal.
Returns
----------
signal_smoothed: np.ndarray
A smoothed 1D signal of same length as signal.
"""
# Reverse because np.convolve reverses the second argument
temp_reversed_coeffs = np.array(list(reversed(self.coeffs)))
# Smooth the part of the signal away from the boundary first
signal_padded = np.append(np.nan * np.ones(len(self.coeffs) - 1), signal)
signal_smoothed = np.convolve(signal_padded, temp_reversed_coeffs, mode="valid")
# This section handles the smoothing behavior at the (left) boundary:
# - shortened_window (default) applies savgol with a smaller window to do the fit
# - identity keeps the original signal (doesn't smooth)
# - nan writes nans
if self.boundary_method == "nan":
return signal_smoothed
# boundary methods "identity" and "shortened window"
for ix in range(min(len(self.coeffs), len(signal))):
if ix == 0 or self.boundary_method == "identity":
signal_smoothed[ix] = signal[ix]
else:
# At the very edge, the design matrix is often singular, in which case
# we just fall back to the raw signal
try:
signal_smoothed[ix] = self.savgol_predict(
signal[: ix + 1], self.poly_fit_degree, 0
)
except np.linalg.LinAlgError: # for small ix, the design matrix is singular
signal_smoothed[ix] = signal[ix]
return signal_smoothed
def savgol_impute(self, signal, impute_order):
"""Impute the nan values in signal using savgol.
This method fills the nan values in the signal with polynomial interpolation
on a rolling window of the immediate past up to window_length data points.
A number of boundary cases are handled involving nan filling close to the boundary.
Note that in the case of many adjacent nans, the method will use previously
imputed values to do the fitting for later values.
Parameters
----------
signal: np.ndarray
A 1D signal to be imputed.
impute_order: int
The polynomial order of the fit used for imputation.
Returns
----------
signal_imputed: np.ndarray
An imputed 1D signal.
"""
if impute_order > self.window_length:
raise ValueError("Impute order must be smaller than window length.")
signal_imputed = np.copy(signal)
for ix in np.where(np.isnan(signal_imputed))[0]:
# Boundary cases
if ix < self.window_length:
# At the boundary, a single value should just be extended
if ix == 1:
signal_imputed[ix] = signal_imputed[ix - 1]
# Otherwise, use savgol fitting on the largest window prior,
# reduce the polynomial degree if needed (can't fit if the
# imputation order is larger than the available data)
else:
signal_imputed[ix] = self.savgol_predict(
signal_imputed[:ix], min(ix - 1, impute_order), -1
)
# Away from the boundary, use savgol fitting on a fixed window
else:
signal_imputed[ix] = self.savgol_predict(
signal_imputed[ix - self.window_length : ix],
impute_order,
-1,
)
return signal_imputed