-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_model.py
237 lines (195 loc) · 9.91 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from utils import create_logger
import time
import numpy as np
import os, math
import torch
from torch.optim.lr_scheduler import ExponentialLR
import torch.optim as optim
from tqdm import tqdm
tqdm.monitor_iterval = 0
from dataset_load import load_data
from models.ReaRev.rearev import ReaRev
from evaluate import Evaluator
class Trainer_KBQA(object):
def __init__(self, args, model_name, logger=None):
#print('Trainer here')
self.args = args
self.logger = logger
self.best_dev_performance = 0.0
self.best_h1 = 0.0
self.best_f1 = 0.0
self.best_h1b = 0.0
self.best_f1b = 0.0
self.eps = args['eps']
self.learning_rate = self.args['lr']
self.test_batch_size = args['test_batch_size']
self.device = torch.device('cuda' if args['use_cuda'] else 'cpu')
self.reset_time = 0
self.load_data(args, args['lm'])
if 'decay_rate' in args:
self.decay_rate = args['decay_rate']
else:
self.decay_rate = 0.98
assert model_name == 'ReaRev'
self.model = ReaRev(self.args, len(self.entity2id), self.num_kb_relation,
self.num_word)
if args['relation_word_emb']:
#self.model.use_rel_texts(self.rel_texts, self.rel_texts_inv)
self.model.encode_rel_texts(self.rel_texts, self.rel_texts_inv)
self.model.to(self.device)
self.evaluator = Evaluator(args=args, model=self.model, entity2id=self.entity2id,
relation2id=self.relation2id, device=self.device)
self.load_pretrain()
self.optim_def()
self.num_relation = self.num_kb_relation
self.num_entity = len(self.entity2id)
self.num_word = len(self.word2id)
print("Entity: {}, Relation: {}, Word: {}".format(self.num_entity, self.num_relation, self.num_word))
for k, v in args.items():
if k.endswith('dim'):
setattr(self, k, v)
if k.endswith('emb_file') or k.endswith('kge_file'):
if v is None:
setattr(self, k, None)
else:
setattr(self, k, args['data_folder'] + v)
def optim_def(self):
trainable = filter(lambda p: p.requires_grad, self.model.parameters())
self.optim_model = optim.Adam(trainable, lr=self.learning_rate)
if self.decay_rate > 0:
self.scheduler = ExponentialLR(self.optim_model, self.decay_rate)
def load_data(self, args, tokenize):
dataset = load_data(args, tokenize)
self.train_data = dataset["train"]
self.valid_data = dataset["valid"]
self.test_data = dataset["test"]
self.entity2id = dataset["entity2id"]
self.relation2id = dataset["relation2id"]
self.word2id = dataset["word2id"]
self.num_word = dataset["num_word"]
self.num_kb_relation = self.test_data.num_kb_relation
self.num_entity = len(self.entity2id)
self.rel_texts = dataset["rel_texts"]
self.rel_texts_inv = dataset["rel_texts_inv"]
def load_pretrain(self):
args = self.args
if args['load_experiment'] is not None:
ckpt_path = os.path.join(args['checkpoint_dir'], args['load_experiment'])
print("Load ckpt from", ckpt_path)
self.load_ckpt(ckpt_path)
def evaluate(self, data, test_batch_size=20, write_info=False):
return self.evaluator.evaluate(data, test_batch_size, write_info)
def train(self, start_epoch, end_epoch):
# self.load_pretrain()
eval_every = self.args['eval_every']
# eval_acc = inference(self.model, self.valid_data, self.entity2id, self.args)
# self.evaluate(self.test_data, self.test_batch_size)
print("Start Training------------------")
for epoch in range(start_epoch, end_epoch + 1):
st = time.time()
#self.train_epoch2()
loss, extras, h1_list_all, f1_list_all = self.train_epoch()
if self.decay_rate > 0:
self.scheduler.step()
self.logger.info("Epoch: {}, loss : {:.4f}, time: {}".format(epoch + 1, loss, time.time() - st))
self.logger.info("Training h1 : {:.4f}, f1 : {:.4f}".format(np.mean(h1_list_all), np.mean(f1_list_all)))
if (epoch + 1) % eval_every == 0:
eval_f1, eval_h1 = self.evaluate(self.valid_data, self.test_batch_size)
self.logger.info("EVAL F1: {:.4f}, H1: {:.4f}".format(eval_f1, eval_h1))
# eval_f1, eval_h1 = self.evaluate(self.test_data, self.test_batch_size)
# self.logger.info("TEST F1: {:.4f}, H1: {:.4f}".format(eval_f1, eval_h1))
do_test = False
if eval_h1 > self.best_h1:
self.best_h1 = eval_h1
self.save_ckpt("h1")
self.logger.info("BEST EVAL H1: {:.4f}".format(eval_h1))
do_test = True
if eval_f1 > self.best_f1:
self.best_f1 = eval_f1
self.save_ckpt("f1")
self.logger.info("BEST EVAL F1: {:.4f}".format(eval_f1))
do_test = True
eval_f1, eval_h1 = self.evaluate(self.test_data, self.test_batch_size)
self.logger.info("TEST F1: {:.4f}, H1: {:.4f}".format(eval_f1, eval_h1))
# if do_test:
# eval_f1, eval_h1 = self.evaluate(self.test_data, self.test_batch_size)
# self.logger.info("TEST F1: {:.4f}, H1: {:.4f}".format(eval_f1, eval_h1))
# if eval_h1 > self.best_h1:
# self.best_h1 = eval_h1
# self.save_ckpt("h1")
# if eval_f1 > self.best_f1:
# self.best_f1 = eval_f1
# self.save_ckpt("f1")
# self.reset_time = 0
# else:
# self.logger.info('No improvement after one evaluation iter.')
# self.reset_time += 1
# if self.reset_time >= 5:
# self.logger.info('No improvement after 5 evaluation. Early Stopping.')
# break
self.save_ckpt("final")
self.logger.info('Train Done! Evaluate on testset with saved model')
print("End Training------------------")
self.evaluate_best()
def evaluate_best(self):
filename = os.path.join(self.args['checkpoint_dir'], "{}-h1.ckpt".format(self.args['experiment_name']))
self.load_ckpt(filename)
eval_f1, eval_h1 = self.evaluate(self.test_data, self.test_batch_size, write_info=False)
self.logger.info("Best h1 evaluation")
self.logger.info("TEST F1: {:.4f}, H1: {:.4f}".format(eval_f1, eval_h1))
filename = os.path.join(self.args['checkpoint_dir'], "{}-f1.ckpt".format(self.args['experiment_name']))
self.load_ckpt(filename)
eval_f1, eval_h1 = self.evaluate(self.test_data, self.test_batch_size, write_info=False)
self.logger.info("Best f1 evaluation")
self.logger.info("TEST F1: {:.4f}, H1: {:.4f}".format(eval_f1, eval_h1))
filename = os.path.join(self.args['checkpoint_dir'], "{}-final.ckpt".format(self.args['experiment_name']))
self.load_ckpt(filename)
eval_f1, eval_h1 = self.evaluate(self.test_data, self.test_batch_size, write_info=False)
self.logger.info("Final evaluation")
self.logger.info("TEST F1: {:.4f}, H1: {:.4f}".format(eval_f1, eval_h1))
def evaluate_single(self, filename):
if filename is not None:
self.load_ckpt(filename)
eval_f1, eval_hits = self.evaluate(self.valid_data, self.test_batch_size, write_info=False)
self.logger.info("EVAL F1: {:.4f}, H1: {:.4f}".format(eval_f1, eval_hits))
test_f1, test_hits = self.evaluate(self.test_data, self.test_batch_size, write_info=True)
self.logger.info("TEST F1: {:.4f}, H1: {:.4f}".format(test_f1, test_hits))
def train_epoch(self):
self.model.train()
self.train_data.reset_batches(is_sequential=False)
losses = []
actor_losses = []
ent_losses = []
num_epoch = math.ceil(self.train_data.num_data / self.args['batch_size'])
h1_list_all = []
f1_list_all = []
for iteration in tqdm(range(num_epoch)):
batch = self.train_data.get_batch(iteration, self.args['batch_size'], self.args['fact_drop'])
self.optim_model.zero_grad()
loss, _, _, tp_list = self.model(batch, training=True)
# if tp_list is not None:
h1_list, f1_list = tp_list
h1_list_all.extend(h1_list)
f1_list_all.extend(f1_list)
loss.backward()
torch.nn.utils.clip_grad_norm_([param for name, param in self.model.named_parameters()],
self.args['gradient_clip'])
self.optim_model.step()
losses.append(loss.item())
extras = [0, 0]
return np.mean(losses), extras, h1_list_all, f1_list_all
def save_ckpt(self, reason="h1"):
model = self.model
checkpoint = {
'model_state_dict': model.state_dict()
}
model_name = os.path.join(self.args['checkpoint_dir'], "{}-{}.ckpt".format(self.args['experiment_name'],
reason))
torch.save(checkpoint, model_name)
print("Best %s, save model as %s" %(reason, model_name))
def load_ckpt(self, filename):
checkpoint = torch.load(filename)
model_state_dict = checkpoint["model_state_dict"]
model = self.model
#self.logger.info("Load param of {} from {}.".format(", ".join(list(model_state_dict.keys())), filename))
model.load_state_dict(model_state_dict, strict=False)