-
Notifications
You must be signed in to change notification settings - Fork 11
/
llpeGA.c
879 lines (815 loc) · 25.8 KB
/
llpeGA.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
/*
Copyright ESIEE (2009)
m.couprie@esiee.fr
This software is an image processing library whose purpose is to be
used primarily for research and teaching.
This software is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.
In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
*/
/*
Ligne de partage des eaux sur les aretes d'un graphe et segmentation hiérarchique
Jean Cousty - 2004-2006
*/
//#define ANIMATE
//#define PARANO /* even paranoid people have ennemies */
//#define VERBOSE
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <float.h>
#include <mccodimage.h>
#include <jccodimage.h>
#include <mcimage.h>
#include <jcimage.h>
#include <mcfifo.h>
#include <jcgraphes.h>
#include <llpeGA.h>
#include <mcrbt.h>
#include <jclabelextrema.h>
#include <mclifo.h>
#include <mcutil.h>
#define EN_FAH 0
int32_t Stream(uint8_t *F, GrapheBasic *g, int32_t sommet, Lifo *FIFO, int32_t *Label, int32_t *alt, uint8_t *G);
int32_t StreamGArecursif(struct xvimage *ga, int32_t x, Lifo *FIFO, int32_t *Label, int32_t *alt, uint8_t *G);
int32_t StreamGAFloat(struct xvimage *ga, int32_t x, Lifo *L, Lifo *B,int32_t *psi, float *G);
int32_t StreamGADouble(struct xvimage *ga, int32_t x, Lifo *L, Lifo *B,int32_t *psi, double *G);
int32_t StreamGA(struct xvimage *ga, int32_t x, Lifo *L, Lifo *B,int32_t *psi, uint8_t *G);
int32_t altitudePoint(struct xvimage *ga, int32_t i)
{
int32_t rs = rowsize(ga); /* taille ligne */
int32_t cs = colsize(ga); /* taille colonne */
int32_t N = rs * cs; /* taille image */
uint8_t *F = UCHARDATA(ga); /* l'image de depart */
int32_t k, min, u;
min = 255;
for(k = 0; k < 4; k++)
if( (u = incidente(i, k, rs, N)) != -1) {
if((int32_t)F[u] < min) min = (int32_t)F[u];
}
return min;
}
/* ga en sortie est une M-border watershed de ga en entree.
De plus retourne une carte de labels des sommets ds un minimum de F */
/* mBorderWshed2d was previously called flowLPE2d*/
struct xvimage *mBorderWshed2d(struct xvimage *ga)
#undef F_NAME
#define F_NAME "mBorderWshed2d"
{
int32_t i,j,k,x,y,z,u, nlabels;
struct xvimage *res;
uint32_t *Eminima;
uint32_t *Vminima;
int32_t rs = rowsize(ga); /* taille ligne */
int32_t cs = colsize(ga); /* taille colonne */
int32_t N = rs * cs; /* taille image */
uint8_t *F = UCHARDATA(ga); /* l'image de depart */
uint8_t *VF; /* fonction indicatrice sur les
sommets */
Lifo *L;
/******************INITIALISATION*********************/
if(!jclabelextrema(ga, &Eminima, 1, &nlabels)) {
fprintf(stderr,"%s erreur de label extrema \n",F_NAME);
exit(1);
}
//printf("nlabels %d \n", nlabels);
if( (res = allocimage(NULL, rs, cs, 1, VFF_TYP_4_BYTE)) == NULL) {
fprintf(stderr,"%s erreur de allocimage \n", F_NAME);
exit(1);
}
Vminima = SLONGDATA(res);
if( (VF = malloc(sizeof(uint8_t) * N)) == NULL) {
fprintf(stderr,"%s ne peut allouer VF \n", F_NAME);
exit(1);
}
/* Valuation des sommets et calcul de V_M a partir de E_M */
for(i = 0; i < N; i++) {
VF[i] = 255;
Vminima[i] = 0;
for(k = 0; k < 4; k++)
if( (u = incidente(i, k, rs, N)) != -1) {
if(F[u] < VF[i]) VF[i] = F[u];
if(Eminima[u] > 0) Vminima[i] = Eminima[u];
}
}
/* Initialisation de la FIFO */
L = CreeLifoVide(2*N); /* nbre maximum d'arete ds un ga 4 connexe
sans regarder les bords */
/* Les aretes adjacentes a un minimum sont inserees dans L */
/* on explore d'abord les aretes horizontales */
for(j = 0; j < cs; j++)
for(i = 0; i < rs -1; i++){
u = j * rs + i; x = Sommetx(u,N,rs); y = Sommety(u,N,rs);
if( (mcmin(Vminima[x], Vminima[y]) == 0) && /* un des deux sommets non ds un minima */
(mcmax(Vminima[x], Vminima[y]) > 0) ) /* et l'autre dans un minima */
LifoPush(L,u);
}
/* puis les aretes verticales */
for(j = 0; j < cs -1; j++)
for(i = 0; i < rs; i++)
{
u = N + j * rs + i; x = Sommetx(u,N,rs); y = Sommety(u,N,rs);
if( (mcmin(Vminima[x], Vminima[y]) == 0) && /* un des deux sommets non ds un minima */
(mcmax(Vminima[x], Vminima[y]) > 0) ) /* et l'autre dans un minima */
LifoPush(L,u);
}
/*************BOUCLE PRINCIPALE*****************/
while(!LifoVide(L)) {
u = LifoPop(L);
x = Sommetx(u, N, rs);
y = Sommety(u, N, rs);
if (VF[x] > VF[y]) {z = y; y = x; x = z;}
if((VF[x] < F[u]) && (VF[y] == F[u])){ /* u est une arete de bord */
F[u] = VF[x];
VF[y] = F[u];
Eminima[u] = Vminima[x];
Vminima[y] = Vminima[x];
for(k = 0; k < 8; k +=2){
if( (z = voisin(y, k, rs, N)) != -1)
if( (Vminima[z] == 0))
LifoPush(L, Arete(y,z,rs,N));
} /* for(k = 0 .. */
} /* if( (VF[x] < ... */
}/* while(!LifoVide... */
free(Eminima); free(VF);
return res;
}
/* ga en sortie est une M-border watershed de ga en entree.
De plus retourne une carte de labels des sommets ds un minimum de F */
/* mBorderWshed2d was previously called flowLPE2d*/
struct xvimage *mBorderWshed2drapide(struct xvimage *ga)
#undef F_NAME
#define F_NAME "mBorderWshed2drapide"
{
int32_t i,j,k,x,y,z,w,u, nlabels, label;
struct xvimage *res;
// uint32_t *Eminima;
int32_t *Vminima;
int32_t rs = rowsize(ga); /* taille ligne */
int32_t cs = colsize(ga); /* taille colonne */
int32_t N = rs * cs; /* taille image */
uint8_t *F = UCHARDATA(ga); /* l'image de depart */
uint8_t *VF; /* fonction indicatrice sur les
sommets */
Lifo *L;
/******************INITIALISATION*********************/
/* if(!jclabelextrema(ga, &Eminima, 1, &nlabels)) {
fprintf(stderr,"%s erreur de label extrema \n",F_NAME);
exit(1);
}*/
if( (res = allocimage(NULL, rs, cs, 1, VFF_TYP_4_BYTE)) == NULL) {
fprintf(stderr,"%s erreur de allocimage \n", F_NAME);
exit(1);
}
Vminima = SLONGDATA(res);
if( (VF = malloc(sizeof(uint8_t) * N)) == NULL) {
fprintf(stderr,"%s ne peut allouer VF \n", F_NAME);
exit(1);
}
/* Valuation des sommets */
for(i = 0; i < N; i++) {
VF[i] = 255;
Vminima[i] = -1;
for(k = 0; k < 4; k++)
if( (u = incidente(i, k, rs, N)) != -1)
if(F[u] < VF[i]) VF[i] = F[u];
}
/* Initialisation de la FIFO */
L = CreeLifoVide(2*N); /* nbre maximum d'arete ds un ga 4 connexe
sans regarder les bords */
/* Calcul des sommets qui sont dans des minima de F */
nlabels = 0;
for(x = 0; x < N; x++){
if(Vminima[x] == -1){ /* On trouve un sommet non encore etiquete */
nlabels ++;
Vminima[x] = nlabels;
LifoPush(L,x);
while(!LifoVide(L)) {
w = LifoPop(L);
label = Vminima[w];
for(k = 0; k < 4; k++)
if( (u = incidente(w, k, rs, N)) != -1){
if(F[u] == VF[w]){
switch(k){
case 0: y = w+1; break; /* EST */
case 1: y = w-rs; break; /* NORD */
case 2: y = w-1; break; /* OUEST */
case 3: y = w+rs; break; /* SUD */
}
if( (label > 0) && (VF[y] < VF[w]) ){
label = 0;
nlabels --;
Vminima[w] = label;
LifoPush(L,w);
}
else if(VF[y] == VF[w]){
if( ( (label > 0) && (Vminima[y] == -1) ) ||
( (label == 0) && (Vminima[y] != 0)) ){
Vminima[y] = label;
LifoPush(L,y);
}
}
}
}
}
}
}
// printf("nlabels %d \n",nlabels);
/* Les aretes adjacentes a un minimum sont inserees dans L */
/* on explore d'abord les aretes horizontales */
for(j = 0; j < cs; j++)
for(i = 0; i < rs -1; i++){
u = j * rs + i; x = Sommetx(u,N,rs); y = Sommety(u,N,rs);
if( (mcmin(Vminima[x], Vminima[y]) == 0) && /* un des deux sommets non ds un minima */
(mcmax(Vminima[x], Vminima[y]) > 0) ) /* et l'autre dans un minima */
LifoPush(L,u);
}
/* puis les aretes verticales */
for(j = 0; j < cs -1; j++)
for(i = 0; i < rs; i++)
{
u = N + j * rs + i; x = Sommetx(u,N,rs); y = Sommety(u,N,rs);
if( (mcmin(Vminima[x], Vminima[y]) == 0) && /* un des deux sommets non ds un minima */
(mcmax(Vminima[x], Vminima[y]) > 0) ) /* et l'autre dans un minima */
LifoPush(L,u);
}
/*************BOUCLE PRINCIPALE*****************/
while(!LifoVide(L)) {
u = LifoPop(L);
x = Sommetx(u, N, rs);
y = Sommety(u, N, rs);
if (VF[x] > VF[y]) {z = y; y = x; x = z;}
if((VF[x] < F[u]) && (VF[y] == F[u])){ /* u est une arete de bord */
F[u] = VF[x];
VF[y] = F[u];
// Eminima[u] = Vminima[x];
Vminima[y] = Vminima[x];
for(k = 0; k < 8; k +=2){
if( (z = voisin(y, k, rs, N)) != -1)
if( (Vminima[z] == 0))
LifoPush(L, Arete(y,z,rs,N));
} /* for(k = 0 .. */
} /* if( (VF[x] < ... */
}/* while(!LifoVide... */
// free(Eminima);
free(VF);
return res;
}// mBorderWshed2drapide(...)
/* LPE d'un graphe a aretes valuees, base sur l'algo recursif pour le
calcul des streams */
int32_t lpeGrapheAreteValuee(GrapheValue *gv, int32_t* Label)
#undef F_NAME
#define F_NAME "LPEGrapheAreteValuee"
{
int32_t i,som, alt, nb_labs, labstream;
GrapheBasic *g = gv->g;
int32_t nb_som = g->nsom;
Lifo *FIFO;
FIFO = CreeLifoVide(nb_som);
PBasicCell p;
uint8_t *G;
uint8_t min_som ;
if( (G = malloc(sizeof(uint8_t) * nb_som)) == NULL){
fprintf(stderr,"%s: erreur de malloc \n", F_NAME);
exit(0);
}
/* Initialisation */
for(i = 0; i < nb_som; i++)
{
min_som = 255;
for(p = g->gamma[i]; p != NULL; p = p->next){
if(gv->F[p->edge] < min_som) min_som = gv->F[p->edge];
}
G[i] = min_som;
Label[i] = NO_LABEL;
}
nb_labs = -1;
/* Boucle principale */
for(i = 0; i < nb_som; i++){
if(Label[i] == NO_LABEL){
alt = INT32_MAX;
labstream = Stream(gv->F, g, i, FIFO, Label, &alt, G);
if(labstream == NO_LABEL){
nb_labs++;
// printf("nouvelle region\n");
while(!LifoVide(FIFO)){
som = LifoPop(FIFO);
Label[som] = nb_labs;
}// while(!LifoVide(L))
} else {
while(!LifoVide(FIFO)){
som = LifoPop(FIFO);
Label[som] = labstream;
}//while(!LifoVide(L))
}//if(!labstream)
}//if(Label[i] == -1)
}
LifoTermine(FIFO);
free(G);
return nb_labs+1;
}
/* Stream versions recursive ds le cas d'un graphe a aretes valuees*/
int32_t Stream(uint8_t *F, GrapheBasic *g, int32_t sommet, Lifo *FIFO, int32_t *Label, int32_t *alt, uint8_t *G)
#undef F_NAME
#define F_NAME "LPEGrapheAreteValuee"
{
PBasicCell p;
int32_t labStream;
Label[sommet] = IN_PROCESS;
LifoPush(FIFO, sommet);
for(p = g->gamma[sommet]; p != NULL; p = p->next)
if(F[p->edge] == G[sommet]){
if(Label[p->vertex] == NO_LABEL){
labStream = Stream(F, g, (int32_t)(p->vertex), FIFO, Label, alt,G);
if( (labStream >= 0) || ( (*alt) < (int32_t)G[sommet]) )
return labStream;
}
else if(Label[p->vertex] >= 0)
return Label[p->vertex];
}
(*alt) = (int32_t)G[sommet];
return NO_LABEL;
}
/* Returns (in the form of a 4-connected GA) the edges that link two
points with different labels */
struct xvimage *SeparatingEdge(struct xvimage *labels)
#undef F_NAME
#define F_NAME "mSeparatingEdge"
{
struct xvimage *ga;
int32_t *lab = SLONGDATA(labels);
int32_t rs = rowsize(labels); /* taille ligne */
int32_t cs = colsize(labels); /* taille colonne */
int32_t N = rs * cs; /* taille image */
int32_t i,j,u,x,y;
if( (ga = allocGAimage(NULL, rs, cs, 1, VFF_TYP_GABYTE)) == NULL) {
fprintf(stderr,"%s: ne peut allouer de GA \n", F_NAME);
exit(1);
}
uint8_t *F = UCHARDATA(ga); /* le resultat */
memset(F,0,2*N);
/* les aretes horizontales */
for(j = 0; j < cs; j++)
for(i = 0; i < rs -1; i++){
u = j * rs + i; x = Sommetx(u,N,rs); y = Sommety(u,N,rs);
if(lab[x] != lab[y])
F[u] = 255;
}
/* puis les aretes verticales */
for(j = 0; j < cs -1; j++)
for(i = 0; i < rs; i++){
u = N + j * rs + i; x = Sommetx(u,N,rs); y = Sommety(u,N,rs);
if(lab[x] != lab[y])
F[u] = 255;
}
return ga;
}
/* Calcul le flow mapping (cf. cite{XXX}) d'un GA 4-connexe */
/* Algo. recursif : l'exploration est en profondeur d'abord */
/* Attention Label est suppose alloue a la bonne taille ... */
/* SI Pb avec cet algo, taper d'abord: unlimit stacksize */
int32_t flowMappingRecursif(struct xvimage* ga, int32_t* Label)
#undef F_NAME
#define F_NAME "LPEGrapheAreteValuee"
{
int32_t rs = rowsize(ga); /* taille ligne */
int32_t cs = colsize(ga); /* taille colonne */
int32_t N = rs * cs; /* nb_som GA */
int32_t i,som, alt, nb_labs, labstream;
uint8_t *G;
Lifo *FIFO;
FIFO = CreeLifoVide(N);
if( (G = malloc(sizeof(uint8_t) * N)) == NULL){
fprintf(stderr,"%s: erreur de malloc \n", F_NAME);
exit(0);
}
/* Initialisation */
for(i = 0; i < N; i++){
G[i] = (uint8_t)altitudePoint(ga,i);
Label[i] = NO_LABEL;
}
nb_labs = -1;
/* Boucle principale */
for(i = 0; i < N; i++){
if(Label[i] == NO_LABEL){
alt = INT32_MAX;
labstream = StreamGArecursif(ga,i,FIFO,Label, &alt, G);
if(labstream == NO_LABEL){
nb_labs++;
while(!LifoVide(FIFO)){
som = LifoPop(FIFO);
Label[som] = nb_labs;
}// while(!LifoVide(L))
} else {
while(!LifoVide(FIFO)){
som = LifoPop(FIFO);
Label[som] = labstream;
}//while(!LifoVide(L))
}//if(!labstream)
}//if(Label[i] == -1)
}
LifoTermine(FIFO);
free(G);
return nb_labs+1;
}
int32_t StreamGArecursif(struct xvimage *ga, int32_t x, Lifo *FIFO, int32_t *Label, int32_t *alt, uint8_t *G)
#undef F_NAME
#define F_NAME "LPEGrapheAreteValuee"
{
int32_t rs = rowsize(ga); /* taille ligne */
int32_t cs = colsize(ga); /* taille colonne */
int32_t N = rs * cs; /* taille image */
uint8_t *F = UCHARDATA(ga);
int32_t labStream,k,u,y;
Label[x] = IN_PROCESS;
LifoPush(FIFO, x);
for(k = 0; k < 4; k++)
if((u = incidente(x, k, rs, N)) != -1)
if(F[u] == G[x]){
switch(k){
case 0: y = x+1; break; /* EST */
case 1: y = x-rs; break; /* NORD */
case 2: y = x-1; break; /* OUEST */
case 3: y = x+rs; break; /* SUD */
}
if(Label[y] == NO_LABEL) {
labStream = StreamGArecursif(ga, y, FIFO, Label, alt,G);
if( (labStream >= 0) || ( (*alt) < (int32_t)G[x]) )
return labStream;
}
else if (Label[y] >= 0){
//(*alt) = G[y];
return Label[y];
}
}
(*alt) = (int32_t)G[x];
return NO_LABEL;
}
/* Calcul le flow mapping (cf. cite{XXX}) d'un GA 4-connexe */
/* Algo. non recursif : l'exploration est, à la fois en */
/* profondeur et en largeur d'abord. */
/* Attention Label est suppose alloue a la bonne taille ... */
int32_t flowMapping(struct xvimage* ga, int32_t* Label)
#undef F_NAME
#define F_NAME "LPEGrapheAreteValuee"
{
int32_t rs = rowsize(ga); /* taille ligne */
int32_t cs = colsize(ga); /* taille colonne */
int32_t N = rs * cs; /* nb_som GA */
int32_t i,som, nb_labs, labstream;
uint8_t *G;
Lifo *FIFO, *B;
FIFO = CreeLifoVide(N);
B = CreeLifoVide(N);
if( (G = malloc(sizeof(uint8_t) * N)) == NULL){
fprintf(stderr,"%s: erreur de malloc \n", F_NAME);
exit(0);
}
/* Initialisation */
for(i = 0; i < N; i++){
G[i] = (uint8_t)altitudePoint(ga,i);
Label[i] = NO_LABEL;
}
nb_labs = -1;
/* Boucle principale */
for(i = 0; i < N; i++){
if(Label[i] == NO_LABEL){
labstream = StreamGA(ga,i,FIFO,B,Label, G);
if(labstream == NO_LABEL){
nb_labs++;
while(!LifoVide(FIFO)){
som = LifoPop(FIFO);
Label[som] = nb_labs;
}// while(!LifoVide(L))
} else {
while(!LifoVide(FIFO)){
som = LifoPop(FIFO);
Label[som] = labstream;
}//while(!LifoVide(L))
}//if(!labstream)
}//if(Label[i] == -1)
}
LifoTermine(FIFO);
LifoTermine(B);
free(G);
return nb_labs+1;
}
/* Calcul de Stream par un algo mixant exploration en profondeur et
largeur d'abord des chemins de plus grande pente */
int32_t StreamGA(struct xvimage *ga, int32_t x, Lifo *L, Lifo *B,int32_t *psi, uint8_t *G)
#undef F_NAME
#define F_NAME "LPEGrapheAreteValuee"
{
// Lifo *B; /* Les bottoms non encore exploré de L */
int32_t rs = rowsize(ga); /* taille ligne */
int32_t cs = colsize(ga); /* taille colonne */
int32_t N = rs * cs; /* taille image */
uint8_t *F = UCHARDATA(ga);
int32_t y, k, u, z;
uint8_t breadth_first;
LifoPush(L,x);
psi[x] = IN_PROCESS;
LifoPush(B,x);
while(!LifoVide(B)){
y = LifoPop(B);
breadth_first = TRUE;
for(k = 0; (k < 4) && (breadth_first == TRUE); k++)
if((u = incidente(y, k, rs, N)) != -1)
if(F[u] == G[y]){
switch(k){
case 0: z = y+1; break; /* EST */
case 1: z = y-rs; break; /* NORD */
case 2: z = y-1; break; /* OUEST */
case 3: z = y+rs; break; /* SUD */
}
if(psi[z] != IN_PROCESS)
{
if(psi[z] != NO_LABEL){
/* There is an inf-stream under L */
LifoFlush(B);
return psi[z];
}
else
{
if(G[z] < G[y]){
LifoPush(L,z);
psi[z] = IN_PROCESS;
/* z is now the only bottom of L */
LifoFlush(B);
LifoPush(B,z); /* hence, switch to depth first */
breadth_first = FALSE;
}
else{
psi[z] = IN_PROCESS;
LifoPush(L,z); /* G[z] == G[y], then z is also a bottom of L */
LifoPush(B,z);
}
}
}
}
}
LifoFlush(B);
return NO_LABEL;
}
float altitudePointFloat(struct xvimage *ga, int32_t i)
{
int32_t rs = rowsize(ga); /* taille ligne */
int32_t cs = colsize(ga); /* taille colonne */
int32_t N = rs * cs; /* taille image */
float *F = FLOATDATA(ga); /* l'image de depart */
int32_t k, u;
float min = 255; // En theorie ca peut aller bien plus haut attention !!! MAX_FLOAT
for(k = 0; k < 4; k++)
if( (u = incidente(i, k, rs, N)) != -1) {
if((float)F[u] < min) min = (float)F[u];
}
return min;
}
/* Calcul le flow mapping (cf. cite{XXX}) d'un GA 4-connexe */
/* Algo. non recursif : l'exploration est, à la fois en */
/* profondeur et en largeur d'abord. */
/* Attention Label est suppose alloue a la bonne taille ... */
int32_t flowMappingFloat(struct xvimage* ga, int32_t* Label)
#undef F_NAME
#define F_NAME "LPEGrapheAreteValuee"
{
int32_t rs = rowsize(ga); /* taille ligne */
int32_t cs = colsize(ga); /* taille colonne */
int32_t N = rs * cs; /* nb_som GA */
int32_t i,som, nb_labs, labstream;
float *G;
Lifo *FIFO, *B;
FIFO = CreeLifoVide(N);
B = CreeLifoVide(N);
if( (G = malloc(sizeof(float) * N)) == NULL){
fprintf(stderr,"%s: erreur de malloc \n", F_NAME);
exit(0);
}
/* Initialisation */
for(i = 0; i < N; i++){
G[i] = (float)altitudePointFloat(ga,i);
Label[i] = NO_LABEL;
}
nb_labs = -1;
/* Boucle principale */
for(i = 0; i < N; i++){
if(Label[i] == NO_LABEL){
labstream = StreamGAFloat(ga,i,FIFO,B,Label, G);
if(labstream == NO_LABEL){
nb_labs++;
while(!LifoVide(FIFO)){
som = LifoPop(FIFO);
Label[som] = nb_labs;
}// while(!LifoVide(L))
} else {
while(!LifoVide(FIFO)){
som = LifoPop(FIFO);
Label[som] = labstream;
}//while(!LifoVide(L))
}//if(!labstream)
}//if(Label[i] == -1)
}
LifoTermine(FIFO);
LifoTermine(B);
free(G);
return nb_labs+1;
}
/* Calcul de Stream par un algo mixant exploration en profondeur et
largeur d'abord des chemins de plus grande pente */
int32_t StreamGAFloat(struct xvimage *ga, int32_t x, Lifo *L, Lifo *B,int32_t *psi, float *G)
#undef F_NAME
#define F_NAME "LPEGrapheAreteValuee"
{
// Lifo *B; /* Les bottoms non encore exploré de L */
int32_t rs = rowsize(ga); /* taille ligne */
int32_t cs = colsize(ga); /* taille colonne */
int32_t N = rs * cs; /* taille image */
float *F = FLOATDATA(ga);
int32_t y, k, u, z;
uint8_t breadth_first;
LifoPush(L,x);
psi[x] = IN_PROCESS;
LifoPush(B,x);
while(!LifoVide(B)){
y = LifoPop(B);
breadth_first = TRUE;
for(k = 0; (k < 4) && (breadth_first == TRUE); k++)
if((u = incidente(y, k, rs, N)) != -1)
if(F[u] == G[y]){
switch(k){
case 0: z = y+1; break; /* EST */
case 1: z = y-rs; break; /* NORD */
case 2: z = y-1; break; /* OUEST */
case 3: z = y+rs; break; /* SUD */
}
if(psi[z] != IN_PROCESS)
{
if(psi[z] != NO_LABEL){
/* There is an inf-stream under L */
LifoFlush(B);
return psi[z];
}
else
{
if(G[z] < G[y]){
LifoPush(L,z);
psi[z] = IN_PROCESS;
/* z is now the only bottom of L */
LifoFlush(B);
LifoPush(B,z); /* hence, switch to depth first */
breadth_first = FALSE;
}
else{
psi[z] = IN_PROCESS;
LifoPush(L,z); /* G[z] == G[y], then z is also a bottom of L */
LifoPush(B,z);
}
}
}
}
}
LifoFlush(B);
return NO_LABEL;
}
double altitudePointDouble(struct xvimage *ga, int32_t i)
{
int32_t rs = rowsize(ga); /* taille ligne */
int32_t cs = colsize(ga); /* taille colonne */
int32_t N = rs * cs; /* taille image */
double *F = DOUBLEDATA(ga); /* l'image de depart */
int32_t k, u;
//double min = 956036423.000000;
double min = 1000000000000000000000000000000.0; // En theorie ca peut aller bien plus haut attention !!! MAX_FLOAT
for(k = 0; k < 4; k++)
if( (u = incidente(i, k, rs, N)) != -1) {
if(F[u] < min) min = F[u];
}
return min;
}
/* Calcul le flow mapping (cf. cite{XXX}) d'un GA 4-connexe */
/* Algo. non recursif : l'exploration est, à la fois en */
/* profondeur et en largeur d'abord. */
/* Attention Label est suppose alloue a la bonne taille ... */
int32_t flowMappingDouble(struct xvimage* ga, int32_t* Label)
#undef F_NAME
#define F_NAME "LPEGrapheAreteValuee"
{
int32_t rs = rowsize(ga); /* taille ligne */
int32_t cs = colsize(ga); /* taille colonne */
int32_t N = rs * cs; /* nb_som GA */
int32_t i,som, nb_labs, labstream;
double *G;
Lifo *FIFO, *B;
FIFO = CreeLifoVide(N);
B = CreeLifoVide(N);
// printf("MAX_DBL %lf \n", DBL_MAX);
if( (G = malloc(sizeof(double) * N)) == NULL){
fprintf(stderr,"%s: erreur de malloc \n", F_NAME);
exit(0);
}
/* Initialisation */
for(i = 0; i < N; i++){
G[i] = altitudePointDouble(ga,i);
Label[i] = NO_LABEL;
}
nb_labs = -1;
/* Boucle principale */
for(i = 0; i < N; i++){
if(Label[i] == NO_LABEL){
labstream = StreamGADouble(ga,i,FIFO,B,Label, G);
if(labstream == NO_LABEL){
nb_labs++;
while(!LifoVide(FIFO)){
som = LifoPop(FIFO);
Label[som] = nb_labs;
}// while(!LifoVide(L))
} else {
while(!LifoVide(FIFO)){
som = LifoPop(FIFO);
Label[som] = labstream;
}//while(!LifoVide(L))
}//if(!labstream)
}//if(Label[i] == -1)
}
LifoTermine(FIFO);
LifoTermine(B);
free(G);
return nb_labs+1;
}
/* Calcul de Stream par un algo mixant exploration en profondeur et
largeur d'abord des chemins de plus grande pente */
int32_t StreamGADouble(struct xvimage *ga, int32_t x, Lifo *L, Lifo *B,int32_t *psi, double *G)
#undef F_NAME
#define F_NAME "LPEGrapheAreteValuee"
{
int32_t rs = rowsize(ga); /* taille ligne */
int32_t cs = colsize(ga); /* taille colonne */
int32_t N = rs * cs; /* taille image */
double *F = DOUBLEDATA(ga);
int32_t y, k, u, z;
uint8_t breadth_first;
LifoPush(L,x);
psi[x] = IN_PROCESS;
LifoPush(B,x);
while(!LifoVide(B)){
y = LifoPop(B);
breadth_first = TRUE;
for(k = 0; (k < 4) && (breadth_first == TRUE); k++)
if((u = incidente(y, k, rs, N)) != -1)
if(F[u] == G[y]){
switch(k){
case 0: z = y+1; break; /* EST */
case 1: z = y-rs; break; /* NORD */
case 2: z = y-1; break; /* OUEST */
case 3: z = y+rs; break; /* SUD */
}
if(psi[z] != IN_PROCESS)
{
if(psi[z] != NO_LABEL){
/* There is an inf-stream under L */
LifoFlush(B);
return psi[z];
}
else
{
if(G[z] < G[y]){
LifoPush(L,z);
psi[z] = IN_PROCESS;
/* z is now the only bottom of L */
LifoFlush(B);
LifoPush(B,z); /* hence, switch to depth first */
breadth_first = FALSE;
}
else{
psi[z] = IN_PROCESS;
LifoPush(L,z); /* G[z] == G[y], then z is also a bottom of L */
LifoPush(B,z);
}
}
}
}
}
LifoFlush(B);
return NO_LABEL;
}