-
Notifications
You must be signed in to change notification settings - Fork 11
/
kruskal.c
196 lines (170 loc) · 5.34 KB
/
kruskal.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
Kruskal algorithm for Maximum Spanning Forest (MSF) computation
implemented to compute an MSF cut in a tree (hierarchy)
author: Camille Couprie
21 oct. 2011
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <mccodimage.h>
#include <mcimage.h>
#include <mclifo.h>
#include <mcindic.h>
#include <mcutil.h>
#include <jcgraphes.h>
#include <jccomptree.h>
#include "MSF_utils.h"
#define false 0
#define true 1
/*=====================================================================================*/
list * MSF_Kruskal(MergeTree * MT)
/*=====================================================================================*/
/*Segment a tree into two components.
Returns a list of nodes correspunding to the Max Spanning Forest cut,
computed using Kruskal's algorithm */
{
int i, j, k, x, y, e1, e2;
int nb_markers; int nb_leafs;
long N, M;
float val=1; //weight parameter for leafs.
mtree * T= MT->tree;
float * W = MT->weights;
// mergeTreePrint(T);
JCctree *CT = T->CT;
int root_node = CT->root;
//nb nodes
M = CT->nbnodes;
// nb_edges
nb_leafs = 0;
for (i = 0; i < M; i++)
if (CT->tabnodes[i].nbsons == 0)
nb_leafs++;
nb_markers = nb_leafs+1;
N=M+nb_markers;
M=N-1;
//printf("Nb nodes:%d Nb edges: %d Nb leafs :%d \n", N, M, nb_leafs);
// indexes of edges : son's nodes indexes
//Memory allocation of temporary arrays for Krukal's algorithm
Lifo * LIFO;
LIFO = CreeLifoVide(M);
if (LIFO == NULL) { fprintf(stderr, "kruskal : CreeLifoVide failed\n"); exit(0); }
int * Mrk = (int*)calloc(N ,sizeof(int));
if (Mrk == NULL) { fprintf(stderr, "kruskal : malloc failed\n"); exit(0); }
uint32_t * SeededNodes = (uint32_t*)malloc(nb_markers*sizeof(uint32_t));
if (SeededNodes == NULL) { fprintf(stderr, "kruskal : malloc failed\n"); exit(0); }
// markers
SeededNodes[0]= M;
j=1;
for (i = 0; i < CT->nbnodes; i++)
if (CT->tabnodes[i].nbsons == 0)
{
SeededNodes[j]= i+CT->nbnodes;
Mrk[SeededNodes[j]] = 1;
j++;
}
Mrk[M] = 1;
uint32_t * Rnk = (uint32_t*)calloc(N, sizeof(uint32_t));
if (Rnk == NULL) { fprintf(stderr, "kruskal : malloc failed\n"); exit(0); }
uint32_t * Fth = (uint32_t*)malloc(N*sizeof(uint32_t));
if (Fth == NULL) { fprintf(stderr, "kruskal : malloc failed\n"); exit(0); }
for(k=0;k<N;k++) { Fth[k]=k; }
// Es : E sorted by decreasing weights
uint32_t * Es = (uint32_t*)malloc(M*sizeof(uint32_t));
if (Es == NULL) { fprintf(stderr, "kruskal : malloc failed\n"); exit(0); }
for(k=0;k<M;k++) Es[k]=k;
float * sorted_weights = (float *)malloc(M*sizeof(float));
for(k=0;k<CT->nbnodes;k++)
sorted_weights[k]=W[k];
for(k=0;k<nb_leafs;k++)
sorted_weights[CT->nbnodes+k]=val;
TriRapideStochastique_dec(sorted_weights,Es, 0, M-1);
free(sorted_weights);
long nb_arete = 0;
int e_max, root;
long cpt_aretes = 0;
// beginning of main loop
while (nb_arete < N-nb_markers)
{
e_max=Es[cpt_aretes];
cpt_aretes=cpt_aretes+1;
e1= e_max; // e1 = Edges[0][e_max];
if (e_max<CT->nbnodes) e2= CT->tabnodes[e_max].father;
else if(e_max!=M) e2= e_max-CT->nbnodes;
else e2=root_node;
if (e2==-1)e2=M; //e2 = Edges[1][e_max];
//printf("(%d %d)\n", e1,e2);
x = element_find(e1, Fth );
y = element_find(e2, Fth );
if ((x != y) && (!(Mrk[x]>=1 && Mrk[y]>=1)))
{
root = element_link( x,y, Rnk, Fth);
//printf("link\n");
nb_arete=nb_arete+1;
if ( Mrk[x]>=1) Mrk[root]= Mrk[x];
else if ( Mrk[y]>=1) Mrk[root]= Mrk[y];
}
}
//building the labeling for each individual markers in map
// (find the root vertex of each tree)
int * Map2 = (int *)malloc(N*sizeof(int));
int * Map = (int *)malloc(N*sizeof(int));
for (i=0; i<N; i++)
Map2[i] = element_find(i, Fth);
// Compute the binary labeling in Map
for (i = 1; i < nb_markers; i++)
Map[SeededNodes[i]] = 1;
Map[M]=0;
for (i=0;i<N;i++) Mrk[i] = false;
for (i=0;i<nb_markers; i++)
{
LifoPush(LIFO, SeededNodes[i]);
while (!LifoVide(LIFO))
{
x = LifoPop(LIFO);
Mrk[x]=true;
j= nb_neighbors(x, CT, nb_leafs);
for (k=0;k<j;k++)
{
y = neighbor(x, k, CT, nb_leafs, SeededNodes);
if (y==-1)y=M;
if (Map2[y]==Map2[SeededNodes[i]] && Mrk[y]==false)
{
LifoPush(LIFO, y);
if (i==0) Map[y]= 0;
else Map[y]= 1;
Mrk[y]=true;
}
}
}
LifoFlush(LIFO);
}
for (i = 1; i < nb_markers; i++)
Map[SeededNodes[i]] = 1;
Map[M]=0;
for (i=0; i<N; i++) {
//fprintf(stderr,"Map[%d]=%d \n",i,Map[i]);
}
// Process the tree to find the cut
list * cut = NULL;
for (i = 0; i < CT->nbnodes; i++)
{
// nodes having a different value than their father are in the cut
if ((CT->tabnodes[i].father != -1) && (Map[CT->tabnodes[i].father] != Map[i]))
Insert(&cut, i);
// leafs having the same label as the root are in the cut
if ((CT->tabnodes[i].nbsons == 0) && (Map[i]==0))
Insert(&cut, i);
}
//PrintList(cut);
LifoTermine(LIFO);
free(Mrk);
free(SeededNodes);
free(Rnk);
free(Fth);
free(Es);
free(Map);
free(Map2);
return cut;
}