forked from cuemacro/findatapy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculation_example.py
59 lines (45 loc) · 1.84 KB
/
calculation_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
__author__ = "saeedamen" # Saeed Amen
#
# Copyright 2022 Cuemacro
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on a "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# See the License for the specific language governing permissions and
# limitations under the License.
#
if __name__ == "__main__":
###### below line CRUCIAL when running Windows, otherwise multiprocessing
# doesn"t work! (not necessary on Linux)
from findatapy.util import SwimPool;
SwimPool()
from findatapy.timeseries import Filter, Calendar, Calculations
import pandas as pd
calculations = Calculations()
calendar = Calendar()
filter = Filter()
# choose run_example = 0 for everything
# run_example = 1 - combine intraday dataframe with daily data dataframe
run_example = 0
if run_example == 1 or run_example == 0:
df_intraday = pd.DataFrame(
index=pd.date_range(start="01 Jan 2020", end="10 Jan 2020",
freq="1min"),
columns=["ones"])
df_intraday["ones"] = 1
df_intraday = df_intraday.tz_localize("utc")
df_daily = pd.DataFrame(
index=pd.date_range(start="01 Jan 2020", end="10 Jan 2020",
freq="B"),
columns=["ones", "twos"])
df_daily["ones"] = 1
df_daily["twos"] = 2
df_joined = calculations.join_intraday_daily(
df_intraday, df_daily, daily_time_of_day="10:00",
daily_time_zone="Europe/London")
print(df_joined)