-
Notifications
You must be signed in to change notification settings - Fork 160
/
fast_align.cc
495 lines (476 loc) · 17 KB
/
fast_align.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
// Copyright 2013 by Chris Dyer
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <utility>
#include <fstream>
#include <getopt.h>
#include <sstream>
#include "src/corpus.h"
#include "src/ttables.h"
#include "src/da.h"
using namespace std;
struct PairHash {
size_t operator()(const pair<short, short>& x) const {
return (unsigned short) x.first << 16 | (unsigned) x.second;
}
};
Dict d; // integerization map
void ParseLine(const string& line,
vector<unsigned>* src,
vector<unsigned>* trg) {
static const unsigned kDIV = d.Convert("|||");
vector<unsigned> tmp;
src->clear();
trg->clear();
d.ConvertWhitespaceDelimitedLine(line, kDIV, &tmp);
unsigned i = 0;
while (i < tmp.size() && tmp[i] != kDIV) {
src->push_back(tmp[i]);
++i;
}
if (i < tmp.size() && tmp[i] == kDIV) {
++i;
for (; i < tmp.size(); ++i)
trg->push_back(tmp[i]);
}
}
string input;
string conditional_probability_filename = "";
string input_model_file = "";
double mean_srclen_multiplier = 1.0;
int is_reverse = 0;
int ITERATIONS = 5;
int favor_diagonal = 0;
double beam_threshold = -4.0;
double prob_align_null = 0.08;
double diagonal_tension = 4.0;
int optimize_tension = 0;
int variational_bayes = 0;
double alpha = 0.01;
int no_null_word = 0;
size_t thread_buffer_size = 10000;
bool force_align = false;
int print_scores = 0;
struct option options[] = {
{"input", required_argument, 0, 'i'},
{"reverse", no_argument, &is_reverse, 1 },
{"iterations", required_argument, 0, 'I'},
{"favor_diagonal", no_argument, &favor_diagonal, 1 },
{"force_align", required_argument, 0, 'f'},
{"mean_srclen_multiplier", required_argument, 0, 'm'},
{"beam_threshold", required_argument, 0, 't'},
{"p0", required_argument, 0, 'q'},
{"diagonal_tension", required_argument, 0, 'T'},
{"optimize_tension", no_argument, &optimize_tension, 1 },
{"variational_bayes", no_argument, &variational_bayes, 1 },
{"alpha", required_argument, 0, 'a'},
{"no_null_word", no_argument, &no_null_word, 1 },
{"conditional_probabilities", required_argument, 0, 'p'},
{"thread_buffer_size", required_argument, 0, 'b'},
{0,0,0,0}
};
bool InitCommandLine(int argc, char** argv) {
while (1) {
int oi;
int c = getopt_long(argc,
argv,
"i:rI:df:m:t:q:T:ova:Np:b:s",
options,
&oi);
if (c == -1) break;
cerr << "ARG=" << (char)c << endl;
switch(c) {
case 'i': input = optarg; break;
case 'r': is_reverse = 1; break;
case 'I': ITERATIONS = atoi(optarg); break;
case 'd': favor_diagonal = 1; break;
case 'f': force_align = 1; conditional_probability_filename = optarg; break;
case 'm': mean_srclen_multiplier = atof(optarg); break;
case 't': beam_threshold = atof(optarg); break;
case 'q': prob_align_null = atof(optarg); break;
case 'T': favor_diagonal = 1; diagonal_tension = atof(optarg); break;
case 'o': optimize_tension = 1; break;
case 'v': variational_bayes = 1; break;
case 'a': alpha = atof(optarg); break;
case 'N': no_null_word = 1; break;
case 'p': conditional_probability_filename = optarg; break;
case 'b': thread_buffer_size = atoi(optarg); break;
case 's': print_scores = 1; break;
default: return false;
}
}
if (input.size() == 0) return false;
return true;
}
void UpdateFromPairs(const vector<string>& lines, const int lc, const int iter,
const bool final_iteration, const bool use_null, const unsigned kNULL,
const double prob_align_not_null, double* c0, double* emp_feat,
double* likelihood, TTable* s2t, vector<string>* outputs) {
if (final_iteration) {
outputs->clear();
outputs->resize(lines.size());
}
double emp_feat_ = 0.0;
double c0_ = 0.0;
double likelihood_ = 0.0;
#pragma omp parallel for schedule(dynamic) reduction(+:emp_feat_,c0_,likelihood_)
for (int line_idx = 0; line_idx < static_cast<int>(lines.size());
++line_idx) {
vector<unsigned> src, trg;
ParseLine(lines[line_idx], &src, &trg);
if (is_reverse)
swap(src, trg);
if (src.size() == 0 || trg.size() == 0) {
cerr << "Error in line " << lc << "\n" << lines[line_idx] << endl;
//return 1;
}
ostringstream oss; // collect output in last iteration
vector<double> probs(src.size() + 1);
bool first_al = true; // used when printing alignments
double local_likelihood = 0.0;
for (unsigned j = 0; j < trg.size(); ++j) {
const unsigned& f_j = trg[j];
double sum = 0;
double prob_a_i = 1.0 / (src.size() + use_null); // uniform (model 1)
if (use_null) {
if (favor_diagonal)
prob_a_i = prob_align_null;
probs[0] = s2t->prob(kNULL, f_j) * prob_a_i;
sum += probs[0];
}
double az = 0;
if (favor_diagonal)
az = DiagonalAlignment::ComputeZ(j + 1, trg.size(), src.size(),
diagonal_tension) / prob_align_not_null;
for (unsigned i = 1; i <= src.size(); ++i) {
if (favor_diagonal)
prob_a_i = DiagonalAlignment::UnnormalizedProb(j + 1, i, trg.size(),
src.size(), diagonal_tension) / az;
probs[i] = s2t->prob(src[i - 1], f_j) * prob_a_i;
sum += probs[i];
}
if (final_iteration) {
double max_p = -1;
int max_index = -1;
if (use_null) {
max_index = 0;
max_p = probs[0];
}
for (unsigned i = 1; i <= src.size(); ++i) {
if (probs[i] > max_p) {
max_index = i;
max_p = probs[i];
}
}
if (max_index > 0) {
if (first_al)
first_al = false;
else
oss << ' ';
if (is_reverse)
oss << j << '-' << (max_index - 1);
else
oss << (max_index - 1) << '-' << j;
}
} else {
if (use_null) {
double count = probs[0] / sum;
c0_ += count;
s2t->Increment(kNULL, f_j, count);
}
for (unsigned i = 1; i <= src.size(); ++i) {
const double p = probs[i] / sum;
s2t->Increment(src[i - 1], f_j, p);
emp_feat_ += DiagonalAlignment::Feature(j, i, trg.size(), src.size()) * p;
}
}
local_likelihood += log(sum);
}
likelihood_ += local_likelihood;
if (final_iteration) {
if (print_scores) {
double log_prob = Md::log_poisson(trg.size(), 0.05 + src.size() * mean_srclen_multiplier);
log_prob += local_likelihood;
oss << " ||| " << log_prob;
}
oss << endl;
(*outputs)[line_idx] = oss.str();
}
}
*emp_feat += emp_feat_;
*c0 += c0_;
*likelihood += likelihood_;
}
inline void AddTranslationOptions(vector<vector<unsigned> >& insert_buffer,
TTable* s2t) {
s2t->SetMaxE(insert_buffer.size()-1);
#pragma omp parallel for schedule(dynamic)
for (unsigned e = 0; e < insert_buffer.size(); ++e) {
for (unsigned f : insert_buffer[e]) {
s2t->Insert(e, f);
}
insert_buffer[e].clear();
}
}
void InitialPass(const unsigned kNULL, const bool use_null, TTable* s2t,
double* n_target_tokens, double* tot_len_ratio,
vector<pair<pair<short, short>, unsigned>>* size_counts) {
ifstream in(input.c_str());
if (!in) {
cerr << "Can't read " << input << endl;
}
unordered_map<pair<short, short>, unsigned, PairHash> size_counts_;
vector<vector<unsigned>> insert_buffer;
size_t insert_buffer_items = 0;
vector<unsigned> src, trg;
string line;
bool flag = false;
int lc = 0;
cerr << "INITIAL PASS " << endl;
while (true) {
getline(in, line);
if (!in)
break;
lc++;
if (lc % 1000 == 0) { cerr << '.'; flag = true; }
if (lc %50000 == 0) { cerr << " [" << lc << "]\n" << flush; flag = false; }
ParseLine(line, &src, &trg);
if (is_reverse)
swap(src, trg);
if (src.size() == 0 || trg.size() == 0) {
cerr << "Error in line " << lc << "\n" << line << endl;
}
*tot_len_ratio += static_cast<double>(trg.size()) / static_cast<double>(src.size());
*n_target_tokens += trg.size();
if (use_null) {
for (const unsigned f : trg) {
s2t->Insert(kNULL, f);
}
}
for (const unsigned e : src) {
if (e >= insert_buffer.size()) {
insert_buffer.resize(e+1);
}
for (const unsigned f : trg) {
insert_buffer[e].push_back(f);
}
insert_buffer_items += trg.size();
}
if (insert_buffer_items > thread_buffer_size * 100) {
insert_buffer_items = 0;
AddTranslationOptions(insert_buffer, s2t);
}
++size_counts_[make_pair<short, short>(trg.size(), src.size())];
}
for (const auto& p : size_counts_) {
size_counts->push_back(p);
}
AddTranslationOptions(insert_buffer, s2t);
mean_srclen_multiplier = (*tot_len_ratio) / lc;
if (flag) {
cerr << endl;
}
cerr << "expected target length = source length * " << mean_srclen_multiplier << endl;
}
int main(int argc, char** argv) {
if (!InitCommandLine(argc, argv)) {
cerr << "Usage: " << argv[0] << " -i file.fr-en\n"
<< " Standard options ([USE] = strongly recommended):\n"
<< " -i: [REQ] Input parallel corpus\n"
<< " -v: [USE] Use Dirichlet prior on lexical translation distributions\n"
<< " -d: [USE] Favor alignment points close to the monotonic diagonoal\n"
<< " -o: [USE] Optimize how close to the diagonal alignment points should be\n"
<< " -r: Run alignment in reverse (condition on target and predict source)\n"
<< " -c: Output conditional probability table\n"
<< " Advanced options:\n"
<< " -I: number of iterations in EM training (default = 5)\n"
<< " -q: p_null parameter (default = 0.08)\n"
<< " -N: No null word\n"
<< " -a: alpha parameter for optional Dirichlet prior (default = 0.01)\n"
<< " -T: starting lambda for diagonal distance parameter (default = 4)\n"
<< " -s: print alignment scores (alignment ||| score, disabled by default)\n";
return 1;
}
const bool use_null = !no_null_word;
if (variational_bayes && alpha <= 0.0) {
cerr << "--alpha must be > 0\n";
return 1;
}
const double prob_align_not_null = 1.0 - prob_align_null;
const unsigned kNULL = d.Convert("<eps>");
TTable s2t, t2s;
vector<pair<pair<short, short>, unsigned>> size_counts;
double tot_len_ratio = 0;
double n_target_tokens = 0;
if (force_align) {
ifstream in(conditional_probability_filename.c_str());
s2t.DeserializeLogProbsFromText(&in, d);
ITERATIONS = 0; // don't do any learning
} else {
InitialPass(kNULL, use_null, &s2t, &n_target_tokens, &tot_len_ratio, &size_counts);
s2t.Freeze();
}
for (int iter = 0; iter < ITERATIONS; ++iter) {
const bool final_iteration = (iter == (ITERATIONS - 1));
cerr << "ITERATION " << (iter + 1) << (final_iteration ? " (FINAL)" : "") << endl;
ifstream in(input.c_str());
if (!in) {
cerr << "Can't read " << input << endl;
return 1;
}
double likelihood = 0;
const double denom = n_target_tokens;
int lc = 0;
bool flag = false;
string line;
double c0 = 0;
double emp_feat = 0;
vector<string> buffer;
vector<string> outputs;
while(true) {
getline(in, line);
if (!in) break;
++lc;
if (lc % 1000 == 0) { cerr << '.'; flag = true; }
if (lc %50000 == 0) { cerr << " [" << lc << "]\n" << flush; flag = false; }
buffer.push_back(line);
if (buffer.size() >= thread_buffer_size) {
UpdateFromPairs(buffer, lc, iter, final_iteration, use_null, kNULL,
prob_align_not_null, &c0, &emp_feat, &likelihood, &s2t, &outputs);
if (final_iteration) {
for (const string& output : outputs) {
cout << output;
}
}
buffer.clear();
}
} // end data loop
if (buffer.size() > 0) {
UpdateFromPairs(buffer, lc, iter, final_iteration, use_null, kNULL,
prob_align_not_null, &c0, &emp_feat, &likelihood, &s2t, &outputs);
if (final_iteration) {
for (const string& output : outputs) {
cout << output;
}
}
buffer.clear();
}
// log(e) = 1.0
double base2_likelihood = likelihood / log(2);
if (flag) {
cerr << endl;
}
emp_feat /= n_target_tokens;
cerr << " log_e likelihood: " << likelihood << endl;
cerr << " log_2 likelihood: " << base2_likelihood << endl;
cerr << " cross entropy: " << (-base2_likelihood / denom) << endl;
cerr << " perplexity: " << pow(2.0, -base2_likelihood / denom) << endl;
cerr << " posterior p0: " << c0 / n_target_tokens << endl;
cerr << " posterior al-feat: " << emp_feat << endl;
//cerr << " model tension: " << mod_feat / toks << endl;
cerr << " size counts: " << size_counts.size() << endl;
if (!final_iteration) {
if (favor_diagonal && optimize_tension && iter > 0) {
for (int ii = 0; ii < 8; ++ii) {
double mod_feat = 0;
#pragma omp parallel for reduction(+:mod_feat)
for(size_t i = 0; i < size_counts.size(); ++i) {
const pair<short,short>& p = size_counts[i].first;
for (short j = 1; j <= p.first; ++j)
mod_feat += size_counts[i].second * DiagonalAlignment::ComputeDLogZ(j, p.first, p.second, diagonal_tension);
}
mod_feat /= n_target_tokens;
cerr << " " << ii + 1 << " model al-feat: " << mod_feat << " (tension=" << diagonal_tension << ")\n";
diagonal_tension += (emp_feat - mod_feat) * 20.0;
if (diagonal_tension <= 0.1) diagonal_tension = 0.1;
if (diagonal_tension > 14) diagonal_tension = 14;
}
cerr << " final tension: " << diagonal_tension << endl;
}
if (variational_bayes)
s2t.NormalizeVB(alpha);
else
s2t.Normalize();
}
}
if (!force_align && !conditional_probability_filename.empty()) {
cerr << "conditional probabilities: " << conditional_probability_filename << endl;
s2t.ExportToFile(conditional_probability_filename.c_str(), d, beam_threshold);
}
if (force_align) {
istream* pin = &cin;
if (input != "-" && !input.empty())
pin = new ifstream(input.c_str());
istream& in = *pin;
string line;
vector<unsigned> src, trg;
int lc = 0;
double tlp = 0;
while(getline(in, line)) {
++lc;
ParseLine(line, &src, &trg);
for (auto s : src) cout << d.Convert(s) << ' ';
cout << "|||";
for (auto t : trg) cout << ' ' << d.Convert(t);
cout << " |||";
if (is_reverse)
swap(src, trg);
if (src.size() == 0 || trg.size() == 0) {
cerr << "Error in line " << lc << endl;
return 1;
}
double log_prob = Md::log_poisson(trg.size(), 0.05 + src.size() * mean_srclen_multiplier);
// compute likelihood
for (unsigned j = 0; j < trg.size(); ++j) {
unsigned f_j = trg[j];
double sum = 0;
int a_j = 0;
double max_pat = 0;
double prob_a_i = 1.0 / (src.size() + use_null); // uniform (model 1)
if (use_null) {
if (favor_diagonal) prob_a_i = prob_align_null;
max_pat = s2t.safe_prob(kNULL, f_j) * prob_a_i;
sum += max_pat;
}
double az = 0;
if (favor_diagonal)
az = DiagonalAlignment::ComputeZ(j+1, trg.size(), src.size(), diagonal_tension) / prob_align_not_null;
for (unsigned i = 1; i <= src.size(); ++i) {
if (favor_diagonal)
prob_a_i = DiagonalAlignment::UnnormalizedProb(j + 1, i, trg.size(), src.size(), diagonal_tension) / az;
double pat = s2t.safe_prob(src[i-1], f_j) * prob_a_i;
if (pat > max_pat) { max_pat = pat; a_j = i; }
sum += pat;
}
log_prob += log(sum);
if (true) {
if (a_j > 0) {
cout << ' ';
if (is_reverse)
cout << j << '-' << (a_j - 1);
else
cout << (a_j - 1) << '-' << j;
}
}
}
tlp += log_prob;
cout << " ||| " << log_prob << endl << flush;
} // loop over test set sentences
cerr << "TOTAL LOG PROB " << tlp << endl;
}
return 0;
}