Skip to content

[CI run] bpf: Set flow flag to allow any source IP in bpf_tunnel_key #4

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 18 commits into from

Conversation

pchaigno
Copy link
Member

No description provided.

Florian Westphal and others added 11 commits July 7, 2022 20:55
Kajetan Puchalski reports crash on ARM, with backtrace of:

__nf_ct_delete_from_lists
nf_ct_delete
early_drop
__nf_conntrack_alloc

Unlike atomic_inc_not_zero, refcount_inc_not_zero is not a full barrier.
conntrack uses SLAB_TYPESAFE_BY_RCU, i.e. it is possible that a 'newly'
allocated object is still in use on another CPU:

CPU1						CPU2
						encounter 'ct' during hlist walk
 delete_from_lists
 refcount drops to 0
 kmem_cache_free(ct);
 __nf_conntrack_alloc() // returns same object
						refcount_inc_not_zero(ct); /* might fail */

						/* If set, ct is public/in the hash table */
						test_bit(IPS_CONFIRMED_BIT, &ct->status);

In case CPU1 already set refcount back to 1, refcount_inc_not_zero()
will succeed.

The expected possibilities for a CPU that obtained the object 'ct'
(but no reference so far) are:

1. refcount_inc_not_zero() fails.  CPU2 ignores the object and moves to
   the next entry in the list.  This happens for objects that are about
   to be free'd, that have been free'd, or that have been reallocated
   by __nf_conntrack_alloc(), but where the refcount has not been
   increased back to 1 yet.

2. refcount_inc_not_zero() succeeds. CPU2 checks the CONFIRMED bit
   in ct->status.  If set, the object is public/in the table.

   If not, the object must be skipped; CPU2 calls nf_ct_put() to
   un-do the refcount increment and moves to the next object.

Parallel deletion from the hlists is prevented by a
'test_and_set_bit(IPS_DYING_BIT, &ct->status);' check, i.e. only one
cpu will do the unlink, the other one will only drop its reference count.

Because refcount_inc_not_zero is not a full barrier, CPU2 may try to
delete an object that is not on any list:

1. refcount_inc_not_zero() successful (refcount inited to 1 on other CPU)
2. CONFIRMED test also successful (load was reordered or zeroing
   of ct->status not yet visible)
3. delete_from_lists unlinks entry not on the hlist, because
   IPS_DYING_BIT is 0 (already cleared).

2) is already wrong: CPU2 will handle a partially initited object
that is supposed to be private to CPU1.

Add needed barriers when refcount_inc_not_zero() is successful.

It also inserts a smp_wmb() before the refcount is set to 1 during
allocation.

Because other CPU might still see the object, refcount_set(1)
"resurrects" it, so we need to make sure that other CPUs will also observe
the right content.  In particular, the CONFIRMED bit test must only pass
once the object is fully initialised and either in the hash or about to be
inserted (with locks held to delay possible unlink from early_drop or
gc worker).

I did not change flow_offload_alloc(), as far as I can see it should call
refcount_inc(), not refcount_inc_not_zero(): the ct object is attached to
the skb so its refcount should be >= 1 in all cases.

v2: prefer smp_acquire__after_ctrl_dep to smp_rmb (Will Deacon).
v3: keep smp_acquire__after_ctrl_dep close to refcount_inc_not_zero call
    add comment in nf_conntrack_netlink, no control dependency there
    due to locks.

Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/all/Yr7WTfd6AVTQkLjI@e126311.manchester.arm.com/
Reported-by: Kajetan Puchalski <kajetan.puchalski@arm.com>
Diagnosed-by: Will Deacon <will@kernel.org>
Fixes: 7197743 ("netfilter: conntrack: convert to refcount_t api")
Signed-off-by: Florian Westphal <fw@strlen.de>
Acked-by: Will Deacon <will@kernel.org>
NFPROTO_ARP is expecting to find the ARP header at the network offset.

In the particular case of ARP, HTYPE= field shows the initial bytes of
the ethernet header destination MAC address.

 netdev out: IN= OUT=bridge0 MACSRC=c2:76:e5:71:e1:de MACDST=36:b0:4a:e2:72:ea MACPROTO=0806 ARP HTYPE=14000 PTYPE=0x4ae2 OPCODE=49782

NFPROTO_NETDEV egress hook is also expecting to find the IP headers at
the network offset.

Fixes: 35b9395 ("netfilter: add generic ARP packet logger")
Reported-by: Tom Yan <tom.ty89@gmail.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
TCP packets will be dropped if the segments number in the tx skb
exceeds limitation when sending iperf3 traffic with --zerocopy option.

we make the following changes:

Get nr_frags in nfp_nfdk_tx_maybe_close_block instead of passing from
outside because it will be changed after skb_linearize operation.

Fill maximum dma_len in first tx descriptor to make sure the whole
head is included in the first descriptor.

Fixes: c10d12e ("nfp: add support for NFDK data path")
Signed-off-by: Baowen Zheng <baowen.zheng@corigine.com>
Reviewed-by: Louis Peens <louis.peens@corigine.com>
Signed-off-by: Simon Horman <simon.horman@corigine.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Blamed commit added back a bug I fixed in commit 9bbd917
("vlan: fix memory leak in vlan_dev_set_egress_priority")

If a memory allocation fails in vlan_changelink() after other allocations
succeeded, we need to call vlan_dev_free_egress_priority()
to free all allocated memory because after a failed ->newlink()
we do not call any methods like ndo_uninit() or dev->priv_destructor().

In following example, if the allocation for last element 2000:2001 fails,
we need to free eight prior allocations:

ip link add link dummy0 dummy0.100 type vlan id 100 \
	egress-qos-map 1:2 2:3 3:4 4:5 5:6 6:7 7:8 8:9 2000:2001

syzbot report was:

BUG: memory leak
unreferenced object 0xffff888117bd1060 (size 32):
comm "syz-executor408", pid 3759, jiffies 4294956555 (age 34.090s)
hex dump (first 32 bytes):
09 00 00 00 00 a0 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff83fc60ad>] kmalloc include/linux/slab.h:600 [inline]
[<ffffffff83fc60ad>] vlan_dev_set_egress_priority+0xed/0x170 net/8021q/vlan_dev.c:193
[<ffffffff83fc6628>] vlan_changelink+0x178/0x1d0 net/8021q/vlan_netlink.c:128
[<ffffffff83fc67c8>] vlan_newlink+0x148/0x260 net/8021q/vlan_netlink.c:185
[<ffffffff838b1278>] rtnl_newlink_create net/core/rtnetlink.c:3363 [inline]
[<ffffffff838b1278>] __rtnl_newlink+0xa58/0xdc0 net/core/rtnetlink.c:3580
[<ffffffff838b1629>] rtnl_newlink+0x49/0x70 net/core/rtnetlink.c:3593
[<ffffffff838ac66c>] rtnetlink_rcv_msg+0x21c/0x5c0 net/core/rtnetlink.c:6089
[<ffffffff839f9c37>] netlink_rcv_skb+0x87/0x1d0 net/netlink/af_netlink.c:2501
[<ffffffff839f8da7>] netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline]
[<ffffffff839f8da7>] netlink_unicast+0x397/0x4c0 net/netlink/af_netlink.c:1345
[<ffffffff839f9266>] netlink_sendmsg+0x396/0x710 net/netlink/af_netlink.c:1921
[<ffffffff8384dbf6>] sock_sendmsg_nosec net/socket.c:714 [inline]
[<ffffffff8384dbf6>] sock_sendmsg+0x56/0x80 net/socket.c:734
[<ffffffff8384e15c>] ____sys_sendmsg+0x36c/0x390 net/socket.c:2488
[<ffffffff838523cb>] ___sys_sendmsg+0x8b/0xd0 net/socket.c:2542
[<ffffffff838525b8>] __sys_sendmsg net/socket.c:2571 [inline]
[<ffffffff838525b8>] __do_sys_sendmsg net/socket.c:2580 [inline]
[<ffffffff838525b8>] __se_sys_sendmsg net/socket.c:2578 [inline]
[<ffffffff838525b8>] __x64_sys_sendmsg+0x78/0xf0 net/socket.c:2578
[<ffffffff845ad8d5>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff845ad8d5>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
[<ffffffff8460006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0

Fixes: 37aa50c ("vlan: introduce vlan_dev_free_egress_priority")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Xin Long <lucien.xin@gmail.com>
Reviewed-by: Xin Long <lucien.xin@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
BUG_ON can be triggered from userspace with an element with a large
userdata area. Replace it by length check and return EINVAL instead.
Over time extensions have been growing in size.

Pick a sufficiently old Fixes: tag to propagate this fix.

Fixes: 7d74026 ("netfilter: nf_tables: variable sized set element keys / data")
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
At disconnect time the MPTCP protocol traverse the subflows
list closing each of them. In some circumstances - MPJ subflow,
passive MPTCP socket, the latter operation can remove the
subflow from the list, invalidating the current iterator.

Address the issue using the safe list traversing helper
variant.

Reported-by: van fantasy <g1042620637@gmail.com>
Fixes: b29fcfb ("mptcp: full disconnect implementation")
Tested-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The new script was not listed in the programs to test.

By consequence, some CIs running MPTCP selftests were not validating
these new tests. Note that MPTCP CI was validating it as it executes all
.sh scripts from 'tools/testing/selftests/net/mptcp' directory.

Fixes: 259a834 ("selftests: mptcp: functional tests for the userspace PM type")
Reported-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Mat Martineau says:

====================
mptcp: Disconnect and selftest fixes

Patch 1 switches to a safe list iterator in the MPTCP disconnect code.

Patch 2 adds the userspace_pm.sh selftest script to the MPTCP selftest
Makefile, resolving the netdev/check_selftest CI failure.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
Pablo Neira Ayuso says:

====================
Netfilter fixes for net

The following patchset contains Netfilter fixes for net:

1) refcount_inc_not_zero() is not semantically equivalent to
   atomic_int_not_zero(), from Florian Westphal. My understanding was
   that refcount_*() API provides a wrapper to easier debugging of
   reference count leaks, however, there are semantic differences
   between these two APIs, where refcount_inc_not_zero() needs a barrier.
   Reason for this subtle difference to me is unknown.

2) packet logging is not correct for ARP and IP packets, from the
   ARP family and netdev/egress respectively. Use skb_network_offset()
   to reach the headers accordingly.

3) set element extension length have been growing over time, replace
   a BUG_ON by EINVAL which might be triggerable from userspace.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
Add missing .gitignore entry.

Fixes: 839b92f ("selftest: tun: add test for NAPI dismantle")
Link: https://lore.kernel.org/r/20220709024141.321683-1-kuba@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Add unregister_fib_notifier as rollback of register_fib_notifier.

Fixes: 4394fbc ("net: marvell: prestera: handle fib notifications")
Signed-off-by: Yevhen Orlov <yevhen.orlov@plvision.eu>
Link: https://lore.kernel.org/r/20220710122021.7642-1-yevhen.orlov@plvision.eu
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
@pchaigno pchaigno force-pushed the ci-test/fix-anysrc-bpf-set-tunnel-key branch 2 times, most recently from b7cc28a to 7b835aa Compare July 13, 2022 09:37
@pchaigno pchaigno closed this Jul 15, 2022
@pchaigno pchaigno deleted the ci-test/fix-anysrc-bpf-set-tunnel-key branch July 15, 2022 17:47
@pchaigno pchaigno restored the ci-test/fix-anysrc-bpf-set-tunnel-key branch July 16, 2022 08:46
@pchaigno pchaigno reopened this Jul 16, 2022
pchaigno added 7 commits July 16, 2022 10:48
This commit extends the ip_tunnel_key struct with a new field for the
flow flags, to pass them to the route lookups. This new field will be
populated and used in subsequent commits.

Signed-off-by: Paul Chaignon <paul@isovalent.com>
Use the new ip_tunnel_key field with the flow flags in the route lookups
for the encapsulated packet. This will be used by the
bpf_skb_set_tunnel_key helper in a subsequent commit.

Signed-off-by: Paul Chaignon <paul@isovalent.com>
Use the new ip_tunnel_key field with the flow flags in the route lookups
for the encapsulated packet. This will be used by the
bpf_skb_set_tunnel_key helper in the subsequent commit.

Signed-off-by: Paul Chaignon <paul@isovalent.com>
Commit 26101f5 ("bpf: Add source ip in "struct bpf_tunnel_key"")
added support for getting and setting the outer source IP of encapsulated
packets via the bpf_skb_{get,set}_tunnel_key BPF helper. This change
allows BPF programs to set any IP address as the source, including for
example the IP address of a container running on the same host.

In that last case, however, the encapsulated packets are dropped when
looking up the route because the source IP address isn't assigned to any
interface on the host. To avoid this, we need to set the
FLOWI_FLAG_ANYSRC flag.

Fixes: 26101f5 ("bpf: Add source ip in "struct bpf_tunnel_key"")
Signed-off-by: Paul Chaignon <paul@isovalent.com>
Signed-off-by: Paul Chaignon <paul@isovalent.com>
@pchaigno pchaigno force-pushed the ci-test/fix-anysrc-bpf-set-tunnel-key branch from 7b835aa to 33f709e Compare July 16, 2022 08:48
@pchaigno pchaigno closed this Jul 16, 2022
@pchaigno pchaigno reopened this Jul 16, 2022
@pchaigno pchaigno closed this Jul 16, 2022
@pchaigno pchaigno deleted the ci-test/fix-anysrc-bpf-set-tunnel-key branch July 16, 2022 08:51
pchaigno pushed a commit that referenced this pull request Jul 25, 2022
…tion

Each cset (css_set) is pinned by its tasks. When we're moving tasks around
across csets for a migration, we need to hold the source and destination
csets to ensure that they don't go away while we're moving tasks about. This
is done by linking cset->mg_preload_node on either the
mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the
same cset->mg_preload_node for both the src and dst lists was deemed okay as
a cset can't be both the source and destination at the same time.

Unfortunately, this overloading becomes problematic when multiple tasks are
involved in a migration and some of them are identity noop migrations while
others are actually moving across cgroups. For example, this can happen with
the following sequence on cgroup1:

 #1> mkdir -p /sys/fs/cgroup/misc/a/b
 #2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs
 #3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS &
 #4> PID=$!
 #5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks
 #6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs

the process including the group leader back into a. In this final migration,
non-leader threads would be doing identity migration while the group leader
is doing an actual one.

After #3, let's say the whole process was in cset A, and that after #4, the
leader moves to cset B. Then, during #6, the following happens:

 1. cgroup_migrate_add_src() is called on B for the leader.

 2. cgroup_migrate_add_src() is called on A for the other threads.

 3. cgroup_migrate_prepare_dst() is called. It scans the src list.

 4. It notices that B wants to migrate to A, so it tries to A to the dst
    list but realizes that its ->mg_preload_node is already busy.

 5. and then it notices A wants to migrate to A as it's an identity
    migration, it culls it by list_del_init()'ing its ->mg_preload_node and
    putting references accordingly.

 6. The rest of migration takes place with B on the src list but nothing on
    the dst list.

This means that A isn't held while migration is in progress. If all tasks
leave A before the migration finishes and the incoming task pins it, the
cset will be destroyed leading to use-after-free.

This is caused by overloading cset->mg_preload_node for both src and dst
preload lists. We wanted to exclude the cset from the src list but ended up
inadvertently excluding it from the dst list too.

This patch fixes the issue by separating out cset->mg_preload_node into
->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst
preloadings don't interfere with each other.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Mukesh Ojha <quic_mojha@quicinc.com>
Reported-by: shisiyuan <shisiyuan19870131@gmail.com>
Link: http://lkml.kernel.org/r/1654187688-27411-1-git-send-email-shisiyuan@xiaomi.com
Link: https://www.spinics.net/lists/cgroups/msg33313.html
Fixes: f817de9 ("cgroup: prepare migration path for unified hierarchy")
Cc: stable@vger.kernel.org # v3.16+
borkmann pushed a commit that referenced this pull request Jul 21, 2023
Ido Schimmel says:

====================
Add backup nexthop ID support

tl;dr
=====

This patchset adds a new bridge port attribute specifying the nexthop
object ID to attach to a redirected skb as tunnel metadata. The ID is
used by the VXLAN driver to choose the target VTEP for the skb. This is
useful for EVPN multi-homing, where we want to redirect local
(intra-rack) traffic upon carrier loss through one of the other VTEPs
(ES peers) connected to the target host.

Background
==========

In a typical EVPN multi-homing setup each host is multi-homed using a
set of links called ES (Ethernet Segment, i.e., LAG) to multiple leaf
switches in a rack. These switches act as VTEPs and are not directly
connected (as opposed to MLAG), but can communicate with each other (as
well as with VTEPs in remote racks) via spine switches over L3.

The control plane uses Type 1 routes [1] to create a mapping between an
ES and VTEPs where the ES has active links. In addition, the control
plane uses Type 2 routes [2] to create a mapping between {MAC, VLAN} and
an ES.

These tables are then used by the control plane to instruct VTEPs how to
reach remote hosts. For example, assuming {MAC X, VLAN Y} is accessible
via ES1 and this ES has active links to VTEP1 and VTEP2. The control
plane will program the following entries to a remote VTEP:

 # ip nexthop add id 1 via $VTEP1_IP fdb
 # ip nexthop add id 2 via $VTEP2_IP fdb
 # ip nexthop add id 10 group 1/2 fdb
 # bridge fdb add $MAC_X dev vx0 master extern_learn vlan $VLAN_Y
 # bridge fdb add $MAC_Y dev vx0 self extern_learn nhid 10 src_vni $VNI_Y

Remote traffic towards the host will be load balanced between VTEP1 and
VTEP2. If the control plane notices a carrier loss on the ES1 link
connected to VTEP1, it will issue a Type 1 route withdraw, prompting
remote VTEPs to remove the effected nexthop from the group:

 # ip nexthop replace id 10 group 2 fdb

Motivation
==========

While remote traffic can be redirected to a VTEP with an active ES link
by withdrawing a Type 1 route, the same is not true for local traffic. A
host that is multi-homed to VTEP1 and VTEP2 via another ES (e.g., ES2)
will send its traffic to {MAC X, VLAN Y} via one of these two switches,
according to its LAG hash algorithm which is not under our control. If
the traffic arrives at VTEP1 - which no longer has an active ES1 link -
it will be dropped due to the carrier loss.

In MLAG setups, the above problem is solved by redirecting the traffic
through the peer link upon carrier loss. This is achieved by defining
the peer link as the backup port of the host facing bond. For example:

 # bridge link set dev bond0 backup_port bond_peer

Unlike MLAG, there is no peer link between the leaf switches in EVPN.
Instead, upon carrier loss, local traffic should be redirected through
one of the active ES peers. This can be achieved by defining the VXLAN
port as the backup port of the host facing bonds. For example:

 # bridge link set dev es1_bond backup_port vx0

However, the VXLAN driver is not programmed with FDB entries for locally
attached hosts and therefore does not know to which VTEP to redirect the
traffic to. This will result in the traffic being replicated to all the
VTEPs (potentially hundreds) in the network and each VTEP dropping the
traffic, except for the active ES peer.

Avoiding the flooding by programming local FDB entries in the VXLAN
driver is not a viable solution as it requires to significantly increase
the number of programmed FDB entries.

Implementation
==============

The proposed solution is to create an FDB nexthop group for each ES with
the IP addresses of the active ES peers and set this ID as the backup
nexthop ID (new bridge port attribute) of the ES link. For example, on
VTEP1:

 # ip nexthop add id 1 via $VTEP2_IP fdb
 # ip nexthop add id 10 group 1 fdb
 # bridge link set dev es1_bond backup_nhid 10
 # bridge link set dev es1_bond backup_port vx0

When the ES link loses its carrier, traffic will be redirected to the
VXLAN port, but instead of only attaching the tunnel ID (i.e., VNI) as
tunnel metadata to the skb, the backup nexthop ID will be attached as
well. The VXLAN driver will then use this information to forward the skb
via the nexthop object associated with the ID, as if the skb hit an FDB
entry associated with this ID.

Testing
=======

A test for both the existing backup port attribute as well as the new
backup nexthop ID attribute is added in patch #4.

Patchset overview
=================

Patch #1 extends the tunnel key structure with the new nexthop ID field.

Patch #2 uses the new field in the VXLAN driver to forward packets via
the specified nexthop ID.

Patch #3 adds the new backup nexthop ID bridge port attribute and
adjusts the bridge driver to attach the ID as tunnel metadata upon
redirection.

Patch #4 adds a selftest.

iproute2 patches can be found here [3].

Changelog
=========

Since RFC [4]:

* Added Nik's tags.

[1] https://datatracker.ietf.org/doc/html/rfc7432#section-7.1
[2] https://datatracker.ietf.org/doc/html/rfc7432#section-7.2
[3] https://github.com/idosch/iproute2/tree/submit/backup_nhid_v1
[4] https://lore.kernel.org/netdev/20230713070925.3955850-1-idosch@nvidia.com/
====================

Acked-by: David Ahern <dsahern@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
borkmann pushed a commit that referenced this pull request Jul 28, 2023
sk->sk_state indicates whether iso_pi(sk)->conn is valid. Operations
that check/update sk_state and access conn should hold lock_sock,
otherwise they can race.

The order of taking locks is hci_dev_lock > lock_sock > iso_conn_lock,
which is how it is in connect/disconnect_cfm -> iso_conn_del ->
iso_chan_del.

Fix locking in iso_connect_cis/bis and sendmsg/recvmsg to take lock_sock
around updating sk_state and conn.

iso_conn_del must not occur during iso_connect_cis/bis, as it frees the
iso_conn. Hold hdev->lock longer to prevent that.

This should not reintroduce the issue fixed in commit 241f519
("Bluetooth: ISO: Avoid circular locking dependency"), since the we
acquire locks in order. We retain the fix in iso_sock_connect to release
lock_sock before iso_connect_* acquires hdev->lock.

Similarly for commit 6a5ad25 ("Bluetooth: ISO: Fix possible
circular locking dependency"). We retain the fix in iso_conn_ready to
not acquire iso_conn_lock before lock_sock.

iso_conn_add shall return iso_conn with valid hcon. Make it so also when
reusing an old CIS connection waiting for disconnect timeout (see
__iso_sock_close where conn->hcon is set to NULL).

Trace with iso_conn_del after iso_chan_add in iso_connect_cis:
===============================================================
iso_sock_create:771: sock 00000000be9b69b7
iso_sock_init:693: sk 000000004dff667e
iso_sock_bind:827: sk 000000004dff667e 70:1a:b8:98:ff:a2 type 1
iso_sock_setsockopt:1289: sk 000000004dff667e
iso_sock_setsockopt:1289: sk 000000004dff667e
iso_sock_setsockopt:1289: sk 000000004dff667e
iso_sock_connect:875: sk 000000004dff667e
iso_connect_cis:353: 70:1a:b8:98:ff:a2 -> 28:3d:c2:4a:7e:da
hci_get_route:1199: 70:1a:b8:98:ff:a2 -> 28:3d:c2:4a:7e:da
hci_conn_add:1005: hci0 dst 28:3d:c2:4a:7e:da
iso_conn_add:140: hcon 000000007b65d182 conn 00000000daf8625e
__iso_chan_add:214: conn 00000000daf8625e
iso_connect_cfm:1700: hcon 000000007b65d182 bdaddr 28:3d:c2:4a:7e:da status 12
iso_conn_del:187: hcon 000000007b65d182 conn 00000000daf8625e, err 16
iso_sock_clear_timer:117: sock 000000004dff667e state 3
    <Note: sk_state is BT_BOUND (3), so iso_connect_cis is still
    running at this point>
iso_chan_del:153: sk 000000004dff667e, conn 00000000daf8625e, err 16
hci_conn_del:1151: hci0 hcon 000000007b65d182 handle 65535
hci_conn_unlink:1102: hci0: hcon 000000007b65d182
hci_chan_list_flush:2780: hcon 000000007b65d182
iso_sock_getsockopt:1376: sk 000000004dff667e
iso_sock_getname:1070: sock 00000000be9b69b7, sk 000000004dff667e
iso_sock_getname:1070: sock 00000000be9b69b7, sk 000000004dff667e
iso_sock_getsockopt:1376: sk 000000004dff667e
iso_sock_getname:1070: sock 00000000be9b69b7, sk 000000004dff667e
iso_sock_getname:1070: sock 00000000be9b69b7, sk 000000004dff667e
iso_sock_shutdown:1434: sock 00000000be9b69b7, sk 000000004dff667e, how 1
__iso_sock_close:632: sk 000000004dff667e state 5 socket 00000000be9b69b7
     <Note: sk_state is BT_CONNECT (5), even though iso_chan_del sets
     BT_CLOSED (6). Only iso_connect_cis sets it to BT_CONNECT, so it
     must be that iso_chan_del occurred between iso_chan_add and end of
     iso_connect_cis.>
BUG: kernel NULL pointer dereference, address: 0000000000000000
PGD 8000000006467067 P4D 8000000006467067 PUD 3f5f067 PMD 0
Oops: 0000 [#1] PREEMPT SMP PTI
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014
RIP: 0010:__iso_sock_close (net/bluetooth/iso.c:664) bluetooth
===============================================================

Trace with iso_conn_del before iso_chan_add in iso_connect_cis:
===============================================================
iso_connect_cis:356: 70:1a:b8:98:ff:a2 -> 28:3d:c2:4a:7e:da
...
iso_conn_add:140: hcon 0000000093bc551f conn 00000000768ae504
hci_dev_put:1487: hci0 orig refcnt 21
hci_event_packet:7607: hci0: event 0x0e
hci_cmd_complete_evt:4231: hci0: opcode 0x2062
hci_cc_le_set_cig_params:3846: hci0: status 0x07
hci_sent_cmd_data:3107: hci0 opcode 0x2062
iso_connect_cfm:1703: hcon 0000000093bc551f bdaddr 28:3d:c2:4a:7e:da status 7
iso_conn_del:187: hcon 0000000093bc551f conn 00000000768ae504, err 12
hci_conn_del:1151: hci0 hcon 0000000093bc551f handle 65535
hci_conn_unlink:1102: hci0: hcon 0000000093bc551f
hci_chan_list_flush:2780: hcon 0000000093bc551f
__iso_chan_add:214: conn 00000000768ae504
    <Note: this conn was already freed in iso_conn_del above>
iso_sock_clear_timer:117: sock 0000000098323f95 state 3
general protection fault, probably for non-canonical address 0x30b29c630930aec8: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 1920 Comm: bluetoothd Tainted: G            E      6.3.0-rc7+ #4
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014
RIP: 0010:detach_if_pending+0x28/0xd0
Code: 90 90 0f 1f 44 00 00 48 8b 47 08 48 85 c0 0f 84 ad 00 00 00 55 89 d5 53 48 83 3f 00 48 89 fb 74 7d 66 90 48 8b 03 48 8b 53 08 <>
RSP: 0018:ffffb90841a67d08 EFLAGS: 00010007
RAX: 0000000000000000 RBX: ffff9141bd5061b8 RCX: 0000000000000000
RDX: 30b29c630930aec8 RSI: ffff9141fdd21e80 RDI: ffff9141bd5061b8
RBP: 0000000000000001 R08: 0000000000000000 R09: ffffb90841a67b88
R10: 0000000000000003 R11: ffffffff8613f558 R12: ffff9141fdd21e80
R13: 0000000000000000 R14: ffff9141b5976010 R15: ffff914185755338
FS:  00007f45768bd840(0000) GS:ffff9141fdd00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000619000424074 CR3: 0000000009f5e005 CR4: 0000000000170ee0
Call Trace:
 <TASK>
 timer_delete+0x48/0x80
 try_to_grab_pending+0xdf/0x170
 __cancel_work+0x37/0xb0
 iso_connect_cis+0x141/0x400 [bluetooth]
===============================================================

Trace with NULL conn->hcon in state BT_CONNECT:
===============================================================
__iso_sock_close:619: sk 00000000f7c71fc5 state 1 socket 00000000d90c5fe5
...
__iso_sock_close:619: sk 00000000f7c71fc5 state 8 socket 00000000d90c5fe5
iso_chan_del:153: sk 00000000f7c71fc5, conn 0000000022c03a7e, err 104
...
iso_sock_connect:862: sk 00000000129b56c3
iso_connect_cis:348: 70:1a:b8:98:ff:a2 -> 28:3d:c2:4a:7d:2a
hci_get_route:1199: 70:1a:b8:98:ff:a2 -> 28:3d:c2:4a:7d:2a
hci_dev_hold:1495: hci0 orig refcnt 19
__iso_chan_add:214: conn 0000000022c03a7e
    <Note: reusing old conn>
iso_sock_clear_timer:117: sock 00000000129b56c3 state 3
...
iso_sock_ready:1485: sk 00000000129b56c3
...
iso_sock_sendmsg:1077: sock 00000000e5013966, sk 00000000129b56c3
BUG: kernel NULL pointer dereference, address: 00000000000006a8
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 1403 Comm: wireplumber Tainted: G            E      6.3.0-rc7+ #4
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014
RIP: 0010:iso_sock_sendmsg+0x63/0x2a0 [bluetooth]
===============================================================

Fixes: 241f519 ("Bluetooth: ISO: Avoid circular locking dependency")
Fixes: 6a5ad25 ("Bluetooth: ISO: Fix possible circular locking dependency")
Signed-off-by: Pauli Virtanen <pav@iki.fi>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
borkmann pushed a commit that referenced this pull request Jul 28, 2023
Petr Machata says:

====================
mlxsw: Permit enslavement to netdevices with uppers

The mlxsw driver currently makes the assumption that the user applies
configuration in a bottom-up manner. Thus netdevices need to be added to
the bridge before IP addresses are configured on that bridge or SVI added
on top of it. Enslaving a netdevice to another netdevice that already has
uppers is in fact forbidden by mlxsw for this reason. Despite this safety,
it is rather easy to get into situations where the offloaded configuration
is just plain wrong.

As an example, take a front panel port, configure an IP address: it gets a
RIF. Now enslave the port to the bridge, and the RIF is gone. Remove the
port from the bridge again, but the RIF never comes back. There is a number
of similar situations, where changing the configuration there and back
utterly breaks the offload.

Similarly, detaching a front panel port from a configured topology means
unoffloading of this whole topology -- VLAN uppers, next hops, etc.
Attaching the port back is then not permitted at all. If it were, it would
not result in a working configuration, because much of mlxsw is written to
react to changes in immediate configuration. There is nothing that would go
visit netdevices in the attached-to topology and offload existing routes
and VLAN memberships, for example.

In this patchset, introduce a number of replays to be invoked so that this
sort of post-hoc offload is supported. Then remove the vetoes that
disallowed enslavement of front panel ports to other netdevices with
uppers.

The patchset progresses as follows:

- In patch #1, fix an issue in the bridge driver. To my knowledge, the
  issue could not have resulted in a buggy behavior previously, and thus is
  packaged with this patchset instead of being sent separately to net.

- In patch #2, add a new helper to the switchdev code.

- In patch #3, drop mlxsw selftests that will not be relevant after this
  patchset anymore.

- Patches #4, #5, #6, #7 and #8 prepare the codebase for smoother
  introduction of the rest of the code.

- Patches #9, #10, #11, #12, torvalds#13 and torvalds#14 replay various aspects of upper
  configuration when a front panel port is introduced into a topology.
  Individual patches take care of bridge and LAG RIF memberships, switchdev
  replay, nexthop and neighbors replay, and MACVLAN offload.

- Patches torvalds#15 and torvalds#16 introduce RIFs for newly-relevant netdevices when a
  front panel port is enslaved (in which case all uppers are newly
  relevant), or, respectively, deslaved (in which case the newly-relevant
  netdevice is the one being deslaved).

- Up until this point, the introduced scaffolding was not really used,
  because mlxsw still forbids enslavement of mlxsw netdevices to uppers
  with uppers. In patch torvalds#17, this condition is finally relaxed.

A sizable selftest suite is available to test all this new code. That will
be sent in a separate patchset.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
borkmann pushed a commit that referenced this pull request Jul 28, 2023
syzkaller found a bug in unix_bind_bsd() [0].  We can reproduce it
by bind()ing a socket on a path with length 108.

108 is the size of sun_addr of struct sockaddr_un and is the maximum
valid length for the pathname socket.  When calling bind(), we use
struct sockaddr_storage as the actual buffer size, so terminating
sun_addr[108] with null is legitimate as done in unix_mkname_bsd().

However, strlen(sunaddr) for such a case causes fortify_panic() if
CONFIG_FORTIFY_SOURCE=y.  __fortify_strlen() has no idea about the
actual buffer size and see the string as unterminated.

Let's use strnlen() to allow sun_addr to be unterminated at 107.

[0]:
detected buffer overflow in __fortify_strlen
kernel BUG at lib/string_helpers.c:1031!
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 PID: 255 Comm: syz-executor296 Not tainted 6.5.0-rc1-00330-g60cc1f7d0605 #4
Hardware name: linux,dummy-virt (DT)
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : fortify_panic+0x1c/0x20 lib/string_helpers.c:1030
lr : fortify_panic+0x1c/0x20 lib/string_helpers.c:1030
sp : ffff800089817af0
x29: ffff800089817af0 x28: ffff800089817b40 x27: 1ffff00011302f68
x26: 000000000000006e x25: 0000000000000012 x24: ffff800087e60140
x23: dfff800000000000 x22: ffff800089817c20 x21: ffff800089817c8e
x20: 000000000000006c x19: ffff00000c323900 x18: ffff800086ab1630
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000001
x14: 1ffff00011302eb8 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000 x9 : 64a26b65474d2a00
x8 : 64a26b65474d2a00 x7 : 0000000000000001 x6 : 0000000000000001
x5 : ffff800089817438 x4 : ffff800086ac99e0 x3 : ffff800080f19e8c
x2 : 0000000000000001 x1 : 0000000100000000 x0 : 000000000000002c
Call trace:
 fortify_panic+0x1c/0x20 lib/string_helpers.c:1030
 _Z16__fortify_strlenPKcU25pass_dynamic_object_size1 include/linux/fortify-string.h:217 [inline]
 unix_bind_bsd net/unix/af_unix.c:1212 [inline]
 unix_bind+0xba8/0xc58 net/unix/af_unix.c:1326
 __sys_bind+0x1ac/0x248 net/socket.c:1792
 __do_sys_bind net/socket.c:1803 [inline]
 __se_sys_bind net/socket.c:1801 [inline]
 __arm64_sys_bind+0x7c/0x94 net/socket.c:1801
 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
 invoke_syscall+0x98/0x2c0 arch/arm64/kernel/syscall.c:52
 el0_svc_common+0x134/0x240 arch/arm64/kernel/syscall.c:139
 do_el0_svc+0x64/0x198 arch/arm64/kernel/syscall.c:188
 el0_svc+0x2c/0x7c arch/arm64/kernel/entry-common.c:647
 el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:665
 el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:591
Code: aa0003e1 d0000e80 91030000 97ffc91a (d4210000)

Fixes: df8fc4e ("kbuild: Enable -fstrict-flex-arrays=3")
Reported-by: syzkaller <syzkaller@googlegroups.com>
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20230724213425.22920-2-kuniyu@amazon.com
Reviewed-by: Simon Horman <simon.horman@corigine.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
borkmann pushed a commit that referenced this pull request Jul 28, 2023
syzkaller found a warning in packet_getname() [0], where we try to
copy 16 bytes to sockaddr_ll.sll_addr[8].

Some devices (ip6gre, vti6, ip6tnl) have 16 bytes address expressed
by struct in6_addr.  Also, Infiniband has 32 bytes as MAX_ADDR_LEN.

The write seems to overflow, but actually not since we use struct
sockaddr_storage defined in __sys_getsockname() and its size is 128
(_K_SS_MAXSIZE) bytes.  Thus, we have sufficient room after sll_addr[]
as __data[].

To avoid the warning, let's add a flex array member union-ed with
sll_addr.

Another option would be to use strncpy() and limit the copied length
to sizeof(sll_addr), but it will return the partial address and break
an application that passes sockaddr_storage to getsockname().

[0]:
memcpy: detected field-spanning write (size 16) of single field "sll->sll_addr" at net/packet/af_packet.c:3604 (size 8)
WARNING: CPU: 0 PID: 255 at net/packet/af_packet.c:3604 packet_getname+0x25c/0x3a0 net/packet/af_packet.c:3604
Modules linked in:
CPU: 0 PID: 255 Comm: syz-executor750 Not tainted 6.5.0-rc1-00330-g60cc1f7d0605 #4
Hardware name: linux,dummy-virt (DT)
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : packet_getname+0x25c/0x3a0 net/packet/af_packet.c:3604
lr : packet_getname+0x25c/0x3a0 net/packet/af_packet.c:3604
sp : ffff800089887bc0
x29: ffff800089887bc0 x28: ffff000010f80f80 x27: 0000000000000003
x26: dfff800000000000 x25: ffff700011310f80 x24: ffff800087d55000
x23: dfff800000000000 x22: ffff800089887c2c x21: 0000000000000010
x20: ffff00000de08310 x19: ffff800089887c20 x18: ffff800086ab1630
x17: 20646c6569662065 x16: 6c676e697320666f x15: 0000000000000001
x14: 1fffe0000d56d7ca x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000 x9 : 3e60944c3da92b00
x8 : 3e60944c3da92b00 x7 : 0000000000000001 x6 : 0000000000000001
x5 : ffff8000898874f8 x4 : ffff800086ac99e0 x3 : ffff8000803f8808
x2 : 0000000000000001 x1 : 0000000100000000 x0 : 0000000000000000
Call trace:
 packet_getname+0x25c/0x3a0 net/packet/af_packet.c:3604
 __sys_getsockname+0x168/0x24c net/socket.c:2042
 __do_sys_getsockname net/socket.c:2057 [inline]
 __se_sys_getsockname net/socket.c:2054 [inline]
 __arm64_sys_getsockname+0x7c/0x94 net/socket.c:2054
 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
 invoke_syscall+0x98/0x2c0 arch/arm64/kernel/syscall.c:52
 el0_svc_common+0x134/0x240 arch/arm64/kernel/syscall.c:139
 do_el0_svc+0x64/0x198 arch/arm64/kernel/syscall.c:188
 el0_svc+0x2c/0x7c arch/arm64/kernel/entry-common.c:647
 el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:665
 el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:591

Fixes: df8fc4e ("kbuild: Enable -fstrict-flex-arrays=3")
Reported-by: syzkaller <syzkaller@googlegroups.com>
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20230724213425.22920-3-kuniyu@amazon.com
Reviewed-by: Simon Horman <simon.horman@corigine.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
borkmann pushed a commit that referenced this pull request Jul 28, 2023
Petr Machata says:

====================
mlxsw: Speed up transceiver module EEPROM dump

Ido Schimmel writes:

Old firmware versions could only read up to 48 bytes from a transceiver
module's EEPROM in one go. Newer versions can read up to 128 bytes,
resulting in fewer transactions.

Query support for the new capability during driver initialization and if
supported, read up to 128 bytes in one go.

This is going to be especially useful for upcoming transceiver module
firmware flashing support.

Before:

 # perf stat -e devlink:devlink_hwmsg -- ethtool -m swp11 page 0x1 offset 128 length 128 i2c 0x50
 [...]
  Performance counter stats for 'ethtool -m swp11 page 0x1 offset 128 length 128 i2c 0x50':

                  3      devlink:devlink_hwmsg

After:

 # perf stat -e devlink:devlink_hwmsg -- ethtool -m swp11 page 0x1 offset 128 length 128 i2c 0x50
 [...]
  Performance counter stats for 'ethtool -m swp11 page 0x1 offset 128 length 128 i2c 0x50':

                  1      devlink:devlink_hwmsg

Patches #1-#4 are preparations / cleanups.

Patch #5 adds support for the new read size.
====================

Link: https://lore.kernel.org/r/cover.1690281940.git.petrm@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
borkmann pushed a commit that referenced this pull request Aug 4, 2023
The cited commit holds encap tbl lock unconditionally when setting
up dests. But it may cause the following deadlock:

 PID: 1063722  TASK: ffffa062ca5d0000  CPU: 13   COMMAND: "handler8"
  #0 [ffffb14de05b7368] __schedule at ffffffffa1d5aa91
  #1 [ffffb14de05b7410] schedule at ffffffffa1d5afdb
  #2 [ffffb14de05b7430] schedule_preempt_disabled at ffffffffa1d5b528
  #3 [ffffb14de05b7440] __mutex_lock at ffffffffa1d5d6cb
  #4 [ffffb14de05b74e8] mutex_lock_nested at ffffffffa1d5ddeb
  #5 [ffffb14de05b74f8] mlx5e_tc_tun_encap_dests_set at ffffffffc12f2096 [mlx5_core]
  #6 [ffffb14de05b7568] post_process_attr at ffffffffc12d9fc5 [mlx5_core]
  #7 [ffffb14de05b75a0] mlx5e_tc_add_fdb_flow at ffffffffc12de877 [mlx5_core]
  #8 [ffffb14de05b75f0] __mlx5e_add_fdb_flow at ffffffffc12e0eef [mlx5_core]
  #9 [ffffb14de05b7660] mlx5e_tc_add_flow at ffffffffc12e12f7 [mlx5_core]
 #10 [ffffb14de05b76b8] mlx5e_configure_flower at ffffffffc12e1686 [mlx5_core]
 #11 [ffffb14de05b7720] mlx5e_rep_indr_offload at ffffffffc12e3817 [mlx5_core]
 #12 [ffffb14de05b7730] mlx5e_rep_indr_setup_tc_cb at ffffffffc12e388a [mlx5_core]
 torvalds#13 [ffffb14de05b7740] tc_setup_cb_add at ffffffffa1ab2ba8
 torvalds#14 [ffffb14de05b77a0] fl_hw_replace_filter at ffffffffc0bdec2f [cls_flower]
 torvalds#15 [ffffb14de05b7868] fl_change at ffffffffc0be6caa [cls_flower]
 torvalds#16 [ffffb14de05b7908] tc_new_tfilter at ffffffffa1ab71f0

[1031218.028143]  wait_for_completion+0x24/0x30
[1031218.028589]  mlx5e_update_route_decap_flows+0x9a/0x1e0 [mlx5_core]
[1031218.029256]  mlx5e_tc_fib_event_work+0x1ad/0x300 [mlx5_core]
[1031218.029885]  process_one_work+0x24e/0x510

Actually no need to hold encap tbl lock if there is no encap action.
Fix it by checking if encap action exists or not before holding
encap tbl lock.

Fixes: 37c3b9f ("net/mlx5e: Prevent encap offload when neigh update is running")
Signed-off-by: Chris Mi <cmi@nvidia.com>
Reviewed-by: Vlad Buslov <vladbu@nvidia.com>
Signed-off-by: Saeed Mahameed <saeedm@nvidia.com>
borkmann pushed a commit that referenced this pull request Aug 14, 2023
Alexander Lobakin says:

====================
page_pool: a couple of assorted optimizations

That initially was a spin-off of the IAVF PP series[0], but has grown
(and shrunk) since then a bunch. In fact, it consists of three
semi-independent blocks:

* #1-2: Compile-time optimization. Split page_pool.h into 2 headers to
  not overbloat the consumers not needing complex inline helpers and
  then stop including it in skbuff.h at all. The first patch is also
  prereq for the whole series.
* #3: Improve cacheline locality for users of the Page Pool frag API.
* #4-6: Use direct cache recycling more aggressively, when it is safe
  obviously. In addition, make sure nobody wants to use Page Pool API
  with disabled interrupts.

Patches #1 and #5 are authored by Yunsheng and Jakub respectively, with
small modifications from my side as per ML discussions.
For the perf numbers for #3-6, please see individual commit messages.

Also available on my GH with many more Page Pool goodies[1].

[0] https://lore.kernel.org/netdev/20230530150035.1943669-1-aleksander.lobakin@intel.com
[1] https://github.com/alobakin/linux/commits/iavf-pp-frag
====================

Link: https://lore.kernel.org/r/20230804180529.2483231-1-aleksander.lobakin@intel.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
borkmann pushed a commit that referenced this pull request Aug 18, 2023
Petr Machata says:

====================
mlxsw: Support traffic redirection from a locked bridge port

Ido Schimmel writes:

It is possible to add a filter that redirects traffic from the ingress
of a bridge port that is locked (i.e., performs security / SMAC lookup)
and has learning enabled. For example:

 # ip link add name br0 type bridge
 # ip link set dev swp1 master br0
 # bridge link set dev swp1 learning on locked on mab on
 # tc qdisc add dev swp1 clsact
 # tc filter add dev swp1 ingress pref 1 proto ip flower skip_sw src_ip 192.0.2.1 action mirred egress redirect dev swp2

In the kernel's Rx path, this filter is evaluated before the Rx handler
of the bridge, which means that redirected traffic should not be
affected by bridge port configuration such as learning.

However, the hardware data path is a bit different and the redirect
action (FORWARDING_ACTION in hardware) merely attaches a pointer to the
packet, which is later used by the L2 lookup stage to understand how to
forward the packet. Between both stages - ingress ACL and L2 lookup -
learning and security lookup are performed, which means that redirected
traffic is affected by bridge port configuration, unlike in the kernel's
data path.

The learning discrepancy was handled in commit 577fa14 ("mlxsw:
spectrum: Do not process learned records with a dummy FID") by simply
ignoring learning notifications generated by the redirected traffic. A
similar solution is not possible for the security / SMAC lookup since
- unlike learning - the CPU is not involved and packets that failed the
lookup are dropped by the device.

Instead, solve this by prepending the ignore action to the redirect
action and use it to instruct the device to disable both learning and
the security / SMAC lookup for redirected traffic.

Patch #1 adds the ignore action.

Patch #2 prepends the action to the redirect action in flower offload
code.

Patch #3 removes the workaround in commit 577fa14 ("mlxsw:
spectrum: Do not process learned records with a dummy FID") since it is
no longer needed.

Patch #4 adds a test case.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
borkmann pushed a commit that referenced this pull request Aug 24, 2023
We found below OOB crash:

[   44.211730] ==================================================================
[   44.212045] BUG: KASAN: slab-out-of-bounds in memcmp+0x8b/0xb0
[   44.212045] Read of size 8 at addr ffff88800870f320 by task poc.xfrm/97
[   44.212045]
[   44.212045] CPU: 0 PID: 97 Comm: poc.xfrm Not tainted 6.4.0-rc7-00072-gdad9774deaf1-dirty #4
[   44.212045] Call Trace:
[   44.212045]  <TASK>
[   44.212045]  dump_stack_lvl+0x37/0x50
[   44.212045]  print_report+0xcc/0x620
[   44.212045]  ? __virt_addr_valid+0xf3/0x170
[   44.212045]  ? memcmp+0x8b/0xb0
[   44.212045]  kasan_report+0xb2/0xe0
[   44.212045]  ? memcmp+0x8b/0xb0
[   44.212045]  kasan_check_range+0x39/0x1c0
[   44.212045]  memcmp+0x8b/0xb0
[   44.212045]  xfrm_state_walk+0x21c/0x420
[   44.212045]  ? __pfx_dump_one_state+0x10/0x10
[   44.212045]  xfrm_dump_sa+0x1e2/0x290
[   44.212045]  ? __pfx_xfrm_dump_sa+0x10/0x10
[   44.212045]  ? __kernel_text_address+0xd/0x40
[   44.212045]  ? kasan_unpoison+0x27/0x60
[   44.212045]  ? mutex_lock+0x60/0xe0
[   44.212045]  ? __pfx_mutex_lock+0x10/0x10
[   44.212045]  ? kasan_save_stack+0x22/0x50
[   44.212045]  netlink_dump+0x322/0x6c0
[   44.212045]  ? __pfx_netlink_dump+0x10/0x10
[   44.212045]  ? mutex_unlock+0x7f/0xd0
[   44.212045]  ? __pfx_mutex_unlock+0x10/0x10
[   44.212045]  __netlink_dump_start+0x353/0x430
[   44.212045]  xfrm_user_rcv_msg+0x3a4/0x410
[   44.212045]  ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[   44.212045]  ? __pfx_xfrm_user_rcv_msg+0x10/0x10
[   44.212045]  ? __pfx_xfrm_dump_sa+0x10/0x10
[   44.212045]  ? __pfx_xfrm_dump_sa_done+0x10/0x10
[   44.212045]  ? __stack_depot_save+0x382/0x4e0
[   44.212045]  ? filter_irq_stacks+0x1c/0x70
[   44.212045]  ? kasan_save_stack+0x32/0x50
[   44.212045]  ? kasan_save_stack+0x22/0x50
[   44.212045]  ? kasan_set_track+0x25/0x30
[   44.212045]  ? __kasan_slab_alloc+0x59/0x70
[   44.212045]  ? kmem_cache_alloc_node+0xf7/0x260
[   44.212045]  ? kmalloc_reserve+0xab/0x120
[   44.212045]  ? __alloc_skb+0xcf/0x210
[   44.212045]  ? netlink_sendmsg+0x509/0x700
[   44.212045]  ? sock_sendmsg+0xde/0xe0
[   44.212045]  ? __sys_sendto+0x18d/0x230
[   44.212045]  ? __x64_sys_sendto+0x71/0x90
[   44.212045]  ? do_syscall_64+0x3f/0x90
[   44.212045]  ? entry_SYSCALL_64_after_hwframe+0x72/0xdc
[   44.212045]  ? netlink_sendmsg+0x509/0x700
[   44.212045]  ? sock_sendmsg+0xde/0xe0
[   44.212045]  ? __sys_sendto+0x18d/0x230
[   44.212045]  ? __x64_sys_sendto+0x71/0x90
[   44.212045]  ? do_syscall_64+0x3f/0x90
[   44.212045]  ? entry_SYSCALL_64_after_hwframe+0x72/0xdc
[   44.212045]  ? kasan_save_stack+0x22/0x50
[   44.212045]  ? kasan_set_track+0x25/0x30
[   44.212045]  ? kasan_save_free_info+0x2e/0x50
[   44.212045]  ? __kasan_slab_free+0x10a/0x190
[   44.212045]  ? kmem_cache_free+0x9c/0x340
[   44.212045]  ? netlink_recvmsg+0x23c/0x660
[   44.212045]  ? sock_recvmsg+0xeb/0xf0
[   44.212045]  ? __sys_recvfrom+0x13c/0x1f0
[   44.212045]  ? __x64_sys_recvfrom+0x71/0x90
[   44.212045]  ? do_syscall_64+0x3f/0x90
[   44.212045]  ? entry_SYSCALL_64_after_hwframe+0x72/0xdc
[   44.212045]  ? copyout+0x3e/0x50
[   44.212045]  netlink_rcv_skb+0xd6/0x210
[   44.212045]  ? __pfx_xfrm_user_rcv_msg+0x10/0x10
[   44.212045]  ? __pfx_netlink_rcv_skb+0x10/0x10
[   44.212045]  ? __pfx_sock_has_perm+0x10/0x10
[   44.212045]  ? mutex_lock+0x8d/0xe0
[   44.212045]  ? __pfx_mutex_lock+0x10/0x10
[   44.212045]  xfrm_netlink_rcv+0x44/0x50
[   44.212045]  netlink_unicast+0x36f/0x4c0
[   44.212045]  ? __pfx_netlink_unicast+0x10/0x10
[   44.212045]  ? netlink_recvmsg+0x500/0x660
[   44.212045]  netlink_sendmsg+0x3b7/0x700
[   44.212045]  ? __pfx_netlink_sendmsg+0x10/0x10
[   44.212045]  ? __pfx_netlink_sendmsg+0x10/0x10
[   44.212045]  sock_sendmsg+0xde/0xe0
[   44.212045]  __sys_sendto+0x18d/0x230
[   44.212045]  ? __pfx___sys_sendto+0x10/0x10
[   44.212045]  ? rcu_core+0x44a/0xe10
[   44.212045]  ? __rseq_handle_notify_resume+0x45b/0x740
[   44.212045]  ? _raw_spin_lock_irq+0x81/0xe0
[   44.212045]  ? __pfx___rseq_handle_notify_resume+0x10/0x10
[   44.212045]  ? __pfx_restore_fpregs_from_fpstate+0x10/0x10
[   44.212045]  ? __pfx_blkcg_maybe_throttle_current+0x10/0x10
[   44.212045]  ? __pfx_task_work_run+0x10/0x10
[   44.212045]  __x64_sys_sendto+0x71/0x90
[   44.212045]  do_syscall_64+0x3f/0x90
[   44.212045]  entry_SYSCALL_64_after_hwframe+0x72/0xdc
[   44.212045] RIP: 0033:0x44b7da
[   44.212045] RSP: 002b:00007ffdc8838548 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
[   44.212045] RAX: ffffffffffffffda RBX: 00007ffdc8839978 RCX: 000000000044b7da
[   44.212045] RDX: 0000000000000038 RSI: 00007ffdc8838770 RDI: 0000000000000003
[   44.212045] RBP: 00007ffdc88385b0 R08: 00007ffdc883858c R09: 000000000000000c
[   44.212045] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001
[   44.212045] R13: 00007ffdc8839968 R14: 00000000004c37d0 R15: 0000000000000001
[   44.212045]  </TASK>
[   44.212045]
[   44.212045] Allocated by task 97:
[   44.212045]  kasan_save_stack+0x22/0x50
[   44.212045]  kasan_set_track+0x25/0x30
[   44.212045]  __kasan_kmalloc+0x7f/0x90
[   44.212045]  __kmalloc_node_track_caller+0x5b/0x140
[   44.212045]  kmemdup+0x21/0x50
[   44.212045]  xfrm_dump_sa+0x17d/0x290
[   44.212045]  netlink_dump+0x322/0x6c0
[   44.212045]  __netlink_dump_start+0x353/0x430
[   44.212045]  xfrm_user_rcv_msg+0x3a4/0x410
[   44.212045]  netlink_rcv_skb+0xd6/0x210
[   44.212045]  xfrm_netlink_rcv+0x44/0x50
[   44.212045]  netlink_unicast+0x36f/0x4c0
[   44.212045]  netlink_sendmsg+0x3b7/0x700
[   44.212045]  sock_sendmsg+0xde/0xe0
[   44.212045]  __sys_sendto+0x18d/0x230
[   44.212045]  __x64_sys_sendto+0x71/0x90
[   44.212045]  do_syscall_64+0x3f/0x90
[   44.212045]  entry_SYSCALL_64_after_hwframe+0x72/0xdc
[   44.212045]
[   44.212045] The buggy address belongs to the object at ffff88800870f300
[   44.212045]  which belongs to the cache kmalloc-64 of size 64
[   44.212045] The buggy address is located 32 bytes inside of
[   44.212045]  allocated 36-byte region [ffff88800870f300, ffff88800870f324)
[   44.212045]
[   44.212045] The buggy address belongs to the physical page:
[   44.212045] page:00000000e4de16ee refcount:1 mapcount:0 mapping:000000000 ...
[   44.212045] flags: 0x100000000000200(slab|node=0|zone=1)
[   44.212045] page_type: 0xffffffff()
[   44.212045] raw: 0100000000000200 ffff888004c41640 dead000000000122 0000000000000000
[   44.212045] raw: 0000000000000000 0000000080200020 00000001ffffffff 0000000000000000
[   44.212045] page dumped because: kasan: bad access detected
[   44.212045]
[   44.212045] Memory state around the buggy address:
[   44.212045]  ffff88800870f200: fa fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
[   44.212045]  ffff88800870f280: 00 00 00 00 00 fc fc fc fc fc fc fc fc fc fc fc
[   44.212045] >ffff88800870f300: 00 00 00 00 04 fc fc fc fc fc fc fc fc fc fc fc
[   44.212045]                                ^
[   44.212045]  ffff88800870f380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[   44.212045]  ffff88800870f400: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[   44.212045] ==================================================================

By investigating the code, we find the root cause of this OOB is the lack
of checks in xfrm_dump_sa(). The buggy code allows a malicious user to pass
arbitrary value of filter->splen/dplen. Hence, with crafted xfrm states,
the attacker can achieve 8 bytes heap OOB read, which causes info leak.

  if (attrs[XFRMA_ADDRESS_FILTER]) {
    filter = kmemdup(nla_data(attrs[XFRMA_ADDRESS_FILTER]),
        sizeof(*filter), GFP_KERNEL);
    if (filter == NULL)
      return -ENOMEM;
    // NO MORE CHECKS HERE !!!
  }

This patch fixes the OOB by adding necessary boundary checks, just like
the code in pfkey_dump() function.

Fixes: d362309 ("ipsec: add support of limited SA dump")
Signed-off-by: Lin Ma <linma@zju.edu.cn>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
borkmann pushed a commit that referenced this pull request Sep 24, 2023
Noticed with:

  make EXTRA_CFLAGS="-fsanitize=address" BUILD_BPF_SKEL=1 CORESIGHT=1 O=/tmp/build/perf-tools-next -C tools/perf install-bin

Direct leak of 45 byte(s) in 1 object(s) allocated from:
    #0 0x7f213f87243b in strdup (/lib64/libasan.so.8+0x7243b)
    #1 0x63d15f in evsel__set_filter util/evsel.c:1371
    #2 0x63d15f in evsel__append_filter util/evsel.c:1387
    #3 0x63d15f in evsel__append_tp_filter util/evsel.c:1400
    #4 0x62cd52 in evlist__append_tp_filter util/evlist.c:1145
    #5 0x62cd52 in evlist__append_tp_filter_pids util/evlist.c:1196
    #6 0x541e49 in trace__set_filter_loop_pids /home/acme/git/perf-tools/tools/perf/builtin-trace.c:3646
    #7 0x541e49 in trace__set_filter_pids /home/acme/git/perf-tools/tools/perf/builtin-trace.c:3670
    #8 0x541e49 in trace__run /home/acme/git/perf-tools/tools/perf/builtin-trace.c:3970
    #9 0x541e49 in cmd_trace /home/acme/git/perf-tools/tools/perf/builtin-trace.c:5141
    #10 0x5ef1a2 in run_builtin /home/acme/git/perf-tools/tools/perf/perf.c:323
    #11 0x4196da in handle_internal_command /home/acme/git/perf-tools/tools/perf/perf.c:377
    #12 0x4196da in run_argv /home/acme/git/perf-tools/tools/perf/perf.c:421
    torvalds#13 0x4196da in main /home/acme/git/perf-tools/tools/perf/perf.c:537
    torvalds#14 0x7f213e84a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)

Free it on evsel__exit().

Acked-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/lkml/20230719202951.534582-2-acme@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
borkmann pushed a commit that referenced this pull request Sep 24, 2023
To plug these leaks detected with:

  $ make EXTRA_CFLAGS="-fsanitize=address" BUILD_BPF_SKEL=1 CORESIGHT=1 O=/tmp/build/perf-tools-next -C tools/perf install-bin

  =================================================================
  ==473890==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 112 byte(s) in 1 object(s) allocated from:
    #0 0x7fdf19aba097 in calloc (/lib64/libasan.so.8+0xba097)
    #1 0x987836 in zalloc (/home/acme/bin/perf+0x987836)
    #2 0x5367ae in thread_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:1289
    #3 0x5367ae in thread__trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:1307
    #4 0x5367ae in trace__sys_exit /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:2468
    #5 0x52bf34 in trace__handle_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3177
    #6 0x52bf34 in __trace__deliver_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3685
    #7 0x542927 in trace__deliver_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3712
    #8 0x542927 in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:4055
    #9 0x542927 in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5141
    #10 0x5ef1a2 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
    #11 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
    #12 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
    torvalds#13 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
    torvalds#14 0x7fdf18a4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)

  Direct leak of 2048 byte(s) in 1 object(s) allocated from:
    #0 0x7f788fcba6af in __interceptor_malloc (/lib64/libasan.so.8+0xba6af)
    #1 0x5337c0 in trace__sys_enter /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:2342
    #2 0x52bfb4 in trace__handle_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3191
    #3 0x52bfb4 in __trace__deliver_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3699
    #4 0x542883 in trace__deliver_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3726
    #5 0x542883 in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:4069
    #6 0x542883 in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5155
    #7 0x5ef232 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
    #8 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
    #9 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
    #10 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
    #11 0x7f788ec4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)

  Indirect leak of 48 byte(s) in 1 object(s) allocated from:
    #0 0x7fdf19aba6af in __interceptor_malloc (/lib64/libasan.so.8+0xba6af)
    #1 0x77b335 in intlist__new util/intlist.c:116
    #2 0x5367fd in thread_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:1293
    #3 0x5367fd in thread__trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:1307
    #4 0x5367fd in trace__sys_exit /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:2468
    #5 0x52bf34 in trace__handle_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3177
    #6 0x52bf34 in __trace__deliver_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3685
    #7 0x542927 in trace__deliver_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3712
    #8 0x542927 in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:4055
    #9 0x542927 in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5141
    #10 0x5ef1a2 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
    #11 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
    #12 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
    torvalds#13 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
    torvalds#14 0x7fdf18a4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)

Acked-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/lkml/20230719202951.534582-4-acme@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
borkmann pushed a commit that referenced this pull request Sep 24, 2023
In 3cb4d5e ("perf trace: Free syscall tp fields in
evsel->priv") it only was freeing if strcmp(evsel->tp_format->system,
"syscalls") returned zero, while the corresponding initialization of
evsel->priv was being performed if it was _not_ zero, i.e. if the tp
system wasn't 'syscalls'.

Just stop looking for that and free it if evsel->priv was set, which
should be equivalent.

Also use the pre-existing evsel_trace__delete() function.

This resolves these leaks, detected with:

  $ make EXTRA_CFLAGS="-fsanitize=address" BUILD_BPF_SKEL=1 CORESIGHT=1 O=/tmp/build/perf-tools-next -C tools/perf install-bin

  =================================================================
  ==481565==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 40 byte(s) in 1 object(s) allocated from:
      #0 0x7f7343cba097 in calloc (/lib64/libasan.so.8+0xba097)
      #1 0x987966 in zalloc (/home/acme/bin/perf+0x987966)
      #2 0x52f9b9 in evsel_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:307
      #3 0x52f9b9 in evsel__syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:333
      #4 0x52f9b9 in evsel__init_raw_syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:458
      #5 0x52f9b9 in perf_evsel__raw_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:480
      #6 0x540e8b in trace__add_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3212
      #7 0x540e8b in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3891
      #8 0x540e8b in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5156
      #9 0x5ef262 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
      #10 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
      #11 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
      #12 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
      torvalds#13 0x7f7342c4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)

  Direct leak of 40 byte(s) in 1 object(s) allocated from:
      #0 0x7f7343cba097 in calloc (/lib64/libasan.so.8+0xba097)
      #1 0x987966 in zalloc (/home/acme/bin/perf+0x987966)
      #2 0x52f9b9 in evsel_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:307
      #3 0x52f9b9 in evsel__syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:333
      #4 0x52f9b9 in evsel__init_raw_syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:458
      #5 0x52f9b9 in perf_evsel__raw_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:480
      #6 0x540dd1 in trace__add_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3205
      #7 0x540dd1 in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3891
      #8 0x540dd1 in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5156
      #9 0x5ef262 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
      #10 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
      #11 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
      #12 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
      torvalds#13 0x7f7342c4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)

  SUMMARY: AddressSanitizer: 80 byte(s) leaked in 2 allocation(s).
  [root@quaco ~]#

With this we plug all leaks with "perf trace sleep 1".

Fixes: 3cb4d5e ("perf trace: Free syscall tp fields in evsel->priv")
Acked-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Riccardo Mancini <rickyman7@gmail.com>
Link: https://lore.kernel.org/lkml/20230719202951.534582-5-acme@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
borkmann pushed a commit that referenced this pull request Sep 24, 2023
…failure to add a probe

Building perf with EXTRA_CFLAGS="-fsanitize=address" a leak is detect
when trying to add a probe to a non-existent function:

  # perf probe -x ~/bin/perf dso__neW
  Probe point 'dso__neW' not found.
    Error: Failed to add events.

  =================================================================
  ==296634==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 128 byte(s) in 1 object(s) allocated from:
      #0 0x7f67642ba097 in calloc (/lib64/libasan.so.8+0xba097)
      #1 0x7f67641a76f1 in allocate_cfi (/lib64/libdw.so.1+0x3f6f1)

  Direct leak of 65 byte(s) in 1 object(s) allocated from:
      #0 0x7f67642b95b5 in __interceptor_realloc.part.0 (/lib64/libasan.so.8+0xb95b5)
      #1 0x6cac75 in strbuf_grow util/strbuf.c:64
      #2 0x6ca934 in strbuf_init util/strbuf.c:25
      #3 0x9337d2 in synthesize_perf_probe_point util/probe-event.c:2018
      #4 0x92be51 in try_to_find_probe_trace_events util/probe-event.c:964
      #5 0x93d5c6 in convert_to_probe_trace_events util/probe-event.c:3512
      #6 0x93d6d5 in convert_perf_probe_events util/probe-event.c:3529
      #7 0x56f37f in perf_add_probe_events /var/home/acme/git/perf-tools-next/tools/perf/builtin-probe.c:354
      #8 0x572fbc in __cmd_probe /var/home/acme/git/perf-tools-next/tools/perf/builtin-probe.c:738
      #9 0x5730f2 in cmd_probe /var/home/acme/git/perf-tools-next/tools/perf/builtin-probe.c:766
      #10 0x635d81 in run_builtin /var/home/acme/git/perf-tools-next/tools/perf/perf.c:323
      #11 0x6362c1 in handle_internal_command /var/home/acme/git/perf-tools-next/tools/perf/perf.c:377
      #12 0x63667a in run_argv /var/home/acme/git/perf-tools-next/tools/perf/perf.c:421
      torvalds#13 0x636b8d in main /var/home/acme/git/perf-tools-next/tools/perf/perf.c:537
      torvalds#14 0x7f676302950f in __libc_start_call_main (/lib64/libc.so.6+0x2950f)

  SUMMARY: AddressSanitizer: 193 byte(s) leaked in 2 allocation(s).
  #

synthesize_perf_probe_point() returns a "detachec" strbuf, i.e. a
malloc'ed string that needs to be free'd.

An audit will be performed to find other such cases.

Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/lkml/ZM0l1Oxamr4SVjfY@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
borkmann pushed a commit that referenced this pull request Sep 24, 2023
While debugging a segfault on 'perf lock contention' without an
available perf.data file I noticed that it was basically calling:

	perf_session__delete(ERR_PTR(-1))

Resulting in:

  (gdb) run lock contention
  Starting program: /root/bin/perf lock contention
  [Thread debugging using libthread_db enabled]
  Using host libthread_db library "/lib64/libthread_db.so.1".
  failed to open perf.data: No such file or directory  (try 'perf record' first)
  Initializing perf session failed

  Program received signal SIGSEGV, Segmentation fault.
  0x00000000005e7515 in auxtrace__free (session=0xffffffffffffffff) at util/auxtrace.c:2858
  2858		if (!session->auxtrace)
  (gdb) p session
  $1 = (struct perf_session *) 0xffffffffffffffff
  (gdb) bt
  #0  0x00000000005e7515 in auxtrace__free (session=0xffffffffffffffff) at util/auxtrace.c:2858
  #1  0x000000000057bb4d in perf_session__delete (session=0xffffffffffffffff) at util/session.c:300
  #2  0x000000000047c421 in __cmd_contention (argc=0, argv=0x7fffffffe200) at builtin-lock.c:2161
  #3  0x000000000047dc95 in cmd_lock (argc=0, argv=0x7fffffffe200) at builtin-lock.c:2604
  #4  0x0000000000501466 in run_builtin (p=0xe597a8 <commands+552>, argc=2, argv=0x7fffffffe200) at perf.c:322
  #5  0x00000000005016d5 in handle_internal_command (argc=2, argv=0x7fffffffe200) at perf.c:375
  #6  0x0000000000501824 in run_argv (argcp=0x7fffffffe02c, argv=0x7fffffffe020) at perf.c:419
  #7  0x0000000000501b11 in main (argc=2, argv=0x7fffffffe200) at perf.c:535
  (gdb)

So just set it to NULL after using PTR_ERR(session) to decode the error
as perf_session__delete(NULL) is supported.

The same problem was found in 'perf top' after an audit of all
perf_session__new() failure handling.

Fixes: 6ef81c5 ("perf session: Return error code for perf_session__new() function on failure")
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexey Budankov <alexey.budankov@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jeremie Galarneau <jeremie.galarneau@efficios.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Mamatha Inamdar <mamatha4@linux.vnet.ibm.com>
Cc: Mukesh Ojha <mojha@codeaurora.org>
Cc: Nageswara R Sastry <rnsastry@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Cc: Shawn Landden <shawn@git.icu>
Cc: Song Liu <songliubraving@fb.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tzvetomir Stoyanov <tstoyanov@vmware.com>
Link: https://lore.kernel.org/lkml/ZN4Q2rxxsL08A8rd@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
borkmann pushed a commit that referenced this pull request Sep 24, 2023
While debugging a segfault on 'perf lock contention' without an
available perf.data file I noticed that it was basically calling:

	perf_session__delete(ERR_PTR(-1))

Resulting in:

  (gdb) run lock contention
  Starting program: /root/bin/perf lock contention
  [Thread debugging using libthread_db enabled]
  Using host libthread_db library "/lib64/libthread_db.so.1".
  failed to open perf.data: No such file or directory  (try 'perf record' first)
  Initializing perf session failed

  Program received signal SIGSEGV, Segmentation fault.
  0x00000000005e7515 in auxtrace__free (session=0xffffffffffffffff) at util/auxtrace.c:2858
  2858		if (!session->auxtrace)
  (gdb) p session
  $1 = (struct perf_session *) 0xffffffffffffffff
  (gdb) bt
  #0  0x00000000005e7515 in auxtrace__free (session=0xffffffffffffffff) at util/auxtrace.c:2858
  #1  0x000000000057bb4d in perf_session__delete (session=0xffffffffffffffff) at util/session.c:300
  #2  0x000000000047c421 in __cmd_contention (argc=0, argv=0x7fffffffe200) at builtin-lock.c:2161
  #3  0x000000000047dc95 in cmd_lock (argc=0, argv=0x7fffffffe200) at builtin-lock.c:2604
  #4  0x0000000000501466 in run_builtin (p=0xe597a8 <commands+552>, argc=2, argv=0x7fffffffe200) at perf.c:322
  #5  0x00000000005016d5 in handle_internal_command (argc=2, argv=0x7fffffffe200) at perf.c:375
  #6  0x0000000000501824 in run_argv (argcp=0x7fffffffe02c, argv=0x7fffffffe020) at perf.c:419
  #7  0x0000000000501b11 in main (argc=2, argv=0x7fffffffe200) at perf.c:535
  (gdb)

So just set it to NULL after using PTR_ERR(session) to decode the error
as perf_session__delete(NULL) is supported.

Fixes: eef4fee ("perf lock: Dynamically allocate lockhash_table")
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: K Prateek Nayak <kprateek.nayak@amd.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mamatha Inamdar <mamatha4@linux.vnet.ibm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Ross Zwisler <zwisler@chromium.org>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Cc: Yang Jihong <yangjihong1@huawei.com>
Link: https://lore.kernel.org/lkml/ZN4R1AYfsD2J8lRs@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
borkmann pushed a commit that referenced this pull request Sep 24, 2023
Except for initial reference, mddev->kobject is referenced by
rdev->kobject, and if the last rdev is freed, there is no guarantee that
mddev is still valid. Hence mddev should not be used anymore after
export_rdev().

This problem can be triggered by following test for mdadm at very
low rate:

New file: mdadm/tests/23rdev-lifetime

devname=${dev0##*/}
devt=`cat /sys/block/$devname/dev`
pid=""
runtime=2

clean_up_test() {
        pill -9 $pid
        echo clear > /sys/block/md0/md/array_state
}

trap 'clean_up_test' EXIT

add_by_sysfs() {
        while true; do
                echo $devt > /sys/block/md0/md/new_dev
        done
}

remove_by_sysfs(){
        while true; do
                echo remove > /sys/block/md0/md/dev-${devname}/state
        done
}

echo md0 > /sys/module/md_mod/parameters/new_array || die "create md0 failed"

add_by_sysfs &
pid="$pid $!"

remove_by_sysfs &
pid="$pid $!"

sleep $runtime
exit 0

Test cmd:

./test --save-logs --logdir=/tmp/ --keep-going --dev=loop --tests=23rdev-lifetime

Test result:

general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6bcb: 0000 [#4] PREEMPT SMP
CPU: 0 PID: 1292 Comm: test Tainted: G      D W          6.5.0-rc2-00121-g01e55c376936 torvalds#562
RIP: 0010:md_wakeup_thread+0x9e/0x320 [md_mod]
Call Trace:
 <TASK>
 mddev_unlock+0x1b6/0x310 [md_mod]
 rdev_attr_store+0xec/0x190 [md_mod]
 sysfs_kf_write+0x52/0x70
 kernfs_fop_write_iter+0x19a/0x2a0
 vfs_write+0x3b5/0x770
 ksys_write+0x74/0x150
 __x64_sys_write+0x22/0x30
 do_syscall_64+0x40/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

Fix this problem by don't dereference mddev after export_rdev().

Fixes: 3ce94ce ("md: fix duplicate filename for rdev")
Signed-off-by: Yu Kuai <yukuai3@huawei.com>
Signed-off-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/r/20230825025532.1523008-2-yukuai1@huaweicloud.com
borkmann pushed a commit that referenced this pull request Sep 24, 2023
Jiri Pirko says:

====================
expose devlink instances relationships

From: Jiri Pirko <jiri@nvidia.com>

Currently, the user can instantiate new SF using "devlink port add"
command. That creates an E-switch representor devlink port.

When user activates this SF, there is an auxiliary device created and
probed for it which leads to SF devlink instance creation.

There is 1:1 relationship between E-switch representor devlink port and
the SF auxiliary device devlink instance.

Also, for example in mlx5, one devlink instance is created for
PCI device and one is created for an auxiliary device that represents
the uplink port. The relation between these is invisible to the user.

Patches #1-#3 and #5 are small preparations.

Patch #4 adds netnsid attribute for nested devlink if that in a
different namespace.

Patch #5 is the main one in this set, introduces the relationship
tracking infrastructure later on used to track SFs, linecards and
devlink instance relationships with nested devlink instances.

Expose the relation to the user by introducing new netlink attribute
DEVLINK_PORT_FN_ATTR_DEVLINK which contains the devlink instance related
to devlink port function. This is done by patch #8.
Patch #9 implements this in mlx5 driver.

Patch #10 converts the linecard nested devlink handling to the newly
introduced rel infrastructure.

Patch #11 benefits from the rel infra and introduces possiblitily to
have relation between devlink instances.
Patch #12 implements this in mlx5 driver.

Examples:
$ devlink dev
pci/0000:08:00.0: nested_devlink auxiliary/mlx5_core.eth.0
pci/0000:08:00.1: nested_devlink auxiliary/mlx5_core.eth.1
auxiliary/mlx5_core.eth.1
auxiliary/mlx5_core.eth.0

$ devlink port add pci/0000:08:00.0 flavour pcisf pfnum 0 sfnum 106
pci/0000:08:00.0/32768: type eth netdev eth4 flavour pcisf controller 0 pfnum 0 sfnum 106 splittable false
  function:
    hw_addr 00:00:00:00:00:00 state inactive opstate detached roce enable
$ devlink port function set pci/0000:08:00.0/32768 state active
$ devlink port show pci/0000:08:00.0/32768
pci/0000:08:00.0/32768: type eth netdev eth4 flavour pcisf controller 0 pfnum 0 sfnum 106 splittable false
  function:
    hw_addr 00:00:00:00:00:00 state active opstate attached roce enable nested_devlink auxiliary/mlx5_core.sf.2

$ devlink port show pci/0000:08:00.0/32768
pci/0000:08:00.0/32768: type eth netdev eth4 flavour pcisf controller 0 pfnum 0 sfnum 106 splittable false
  function:
    hw_addr 00:00:00:00:00:00 state active opstate attached roce enable nested_devlink auxiliary/mlx5_core.sf.2 nested_devlink_netns ns1
====================

Reviewed-by: Simon Horman <horms@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
borkmann pushed a commit that referenced this pull request Oct 6, 2023
Fix an error detected by memory sanitizer:
```
==4033==WARNING: MemorySanitizer: use-of-uninitialized-value
    #0 0x55fb0fbedfc7 in read_alias_info tools/perf/util/pmu.c:457:6
    #1 0x55fb0fbea339 in check_info_data tools/perf/util/pmu.c:1434:2
    #2 0x55fb0fbea339 in perf_pmu__check_alias tools/perf/util/pmu.c:1504:9
    #3 0x55fb0fbdca85 in parse_events_add_pmu tools/perf/util/parse-events.c:1429:32
    #4 0x55fb0f965230 in parse_events_parse tools/perf/util/parse-events.y:299:6
    #5 0x55fb0fbdf6b2 in parse_events__scanner tools/perf/util/parse-events.c:1822:8
    #6 0x55fb0fbdf8c1 in __parse_events tools/perf/util/parse-events.c:2094:8
    #7 0x55fb0fa8ffa9 in parse_events tools/perf/util/parse-events.h:41:9
    #8 0x55fb0fa8ffa9 in test_event tools/perf/tests/parse-events.c:2393:8
    #9 0x55fb0fa8f458 in test__pmu_events tools/perf/tests/parse-events.c:2551:15
    #10 0x55fb0fa6d93f in run_test tools/perf/tests/builtin-test.c:242:9
    #11 0x55fb0fa6d93f in test_and_print tools/perf/tests/builtin-test.c:271:8
    #12 0x55fb0fa6d082 in __cmd_test tools/perf/tests/builtin-test.c:442:5
    torvalds#13 0x55fb0fa6d082 in cmd_test tools/perf/tests/builtin-test.c:564:9
    torvalds#14 0x55fb0f942720 in run_builtin tools/perf/perf.c:322:11
    torvalds#15 0x55fb0f942486 in handle_internal_command tools/perf/perf.c:375:8
    torvalds#16 0x55fb0f941dab in run_argv tools/perf/perf.c:419:2
    torvalds#17 0x55fb0f941dab in main tools/perf/perf.c:535:3
```

Fixes: 7b723db ("perf pmu: Be lazy about loading event info files from sysfs")
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: James Clark <james.clark@arm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Link: https://lore.kernel.org/r/20230914022425.1489035-1-irogers@google.com
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
borkmann pushed a commit that referenced this pull request Oct 6, 2023
The following call trace shows a deadlock issue due to recursive locking of
mutex "device_mutex". First lock acquire is in target_for_each_device() and
second in target_free_device().

 PID: 148266   TASK: ffff8be21ffb5d00  CPU: 10   COMMAND: "iscsi_ttx"
  #0 [ffffa2bfc9ec3b18] __schedule at ffffffffa8060e7f
  #1 [ffffa2bfc9ec3ba0] schedule at ffffffffa8061224
  #2 [ffffa2bfc9ec3bb8] schedule_preempt_disabled at ffffffffa80615ee
  #3 [ffffa2bfc9ec3bc8] __mutex_lock at ffffffffa8062fd7
  #4 [ffffa2bfc9ec3c40] __mutex_lock_slowpath at ffffffffa80631d3
  #5 [ffffa2bfc9ec3c50] mutex_lock at ffffffffa806320c
  #6 [ffffa2bfc9ec3c68] target_free_device at ffffffffc0935998 [target_core_mod]
  #7 [ffffa2bfc9ec3c90] target_core_dev_release at ffffffffc092f975 [target_core_mod]
  #8 [ffffa2bfc9ec3ca0] config_item_put at ffffffffa79d250f
  #9 [ffffa2bfc9ec3cd0] config_item_put at ffffffffa79d2583
 #10 [ffffa2bfc9ec3ce0] target_devices_idr_iter at ffffffffc0933f3a [target_core_mod]
 #11 [ffffa2bfc9ec3d00] idr_for_each at ffffffffa803f6fc
 #12 [ffffa2bfc9ec3d60] target_for_each_device at ffffffffc0935670 [target_core_mod]
 torvalds#13 [ffffa2bfc9ec3d98] transport_deregister_session at ffffffffc0946408 [target_core_mod]
 torvalds#14 [ffffa2bfc9ec3dc8] iscsit_close_session at ffffffffc09a44a6 [iscsi_target_mod]
 torvalds#15 [ffffa2bfc9ec3df0] iscsit_close_connection at ffffffffc09a4a88 [iscsi_target_mod]
 torvalds#16 [ffffa2bfc9ec3df8] finish_task_switch at ffffffffa76e5d07
 torvalds#17 [ffffa2bfc9ec3e78] iscsit_take_action_for_connection_exit at ffffffffc0991c23 [iscsi_target_mod]
 torvalds#18 [ffffa2bfc9ec3ea0] iscsi_target_tx_thread at ffffffffc09a403b [iscsi_target_mod]
 torvalds#19 [ffffa2bfc9ec3f08] kthread at ffffffffa76d8080
 torvalds#20 [ffffa2bfc9ec3f50] ret_from_fork at ffffffffa8200364

Fixes: 36d4cb4 ("scsi: target: Avoid that EXTENDED COPY commands trigger lock inversion")
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Link: https://lore.kernel.org/r/20230918225848.66463-1-junxiao.bi@oracle.com
Reviewed-by: Mike Christie <michael.christie@oracle.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
borkmann pushed a commit that referenced this pull request Oct 6, 2023
Petr Machata says:

====================
mlxsw: Provide enhancements and new feature

Vadim Pasternak writes:

Patch #1 - Optimize transaction size for efficient retrieval of module
           data.
Patch #3 - Enable thermal zone binding with new cooling device.
Patch #4 - Employ standard macros for dividing buffer into the chunks.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
borkmann pushed a commit that referenced this pull request Oct 17, 2023
Fix the deadlock by refactoring the MR cache cleanup flow to flush the
workqueue without holding the rb_lock.
This adds a race between cache cleanup and creation of new entries which
we solve by denied creation of new entries after cache cleanup started.

Lockdep:
WARNING: possible circular locking dependency detected
 [ 2785.326074 ] 6.2.0-rc6_for_upstream_debug_2023_01_31_14_02 #1 Not tainted
 [ 2785.339778 ] ------------------------------------------------------
 [ 2785.340848 ] devlink/53872 is trying to acquire lock:
 [ 2785.341701 ] ffff888124f8c0c8 ((work_completion)(&(&ent->dwork)->work)){+.+.}-{0:0}, at: __flush_work+0xc8/0x900
 [ 2785.343403 ]
 [ 2785.343403 ] but task is already holding lock:
 [ 2785.344464 ] ffff88817e8f1260 (&dev->cache.rb_lock){+.+.}-{3:3}, at: mlx5_mkey_cache_cleanup+0x77/0x250 [mlx5_ib]
 [ 2785.346273 ]
 [ 2785.346273 ] which lock already depends on the new lock.
 [ 2785.346273 ]
 [ 2785.347720 ]
 [ 2785.347720 ] the existing dependency chain (in reverse order) is:
 [ 2785.349003 ]
 [ 2785.349003 ] -> #1 (&dev->cache.rb_lock){+.+.}-{3:3}:
 [ 2785.350160 ]        __mutex_lock+0x14c/0x15c0
 [ 2785.350962 ]        delayed_cache_work_func+0x2d1/0x610 [mlx5_ib]
 [ 2785.352044 ]        process_one_work+0x7c2/0x1310
 [ 2785.352879 ]        worker_thread+0x59d/0xec0
 [ 2785.353636 ]        kthread+0x28f/0x330
 [ 2785.354370 ]        ret_from_fork+0x1f/0x30
 [ 2785.355135 ]
 [ 2785.355135 ] -> #0 ((work_completion)(&(&ent->dwork)->work)){+.+.}-{0:0}:
 [ 2785.356515 ]        __lock_acquire+0x2d8a/0x5fe0
 [ 2785.357349 ]        lock_acquire+0x1c1/0x540
 [ 2785.358121 ]        __flush_work+0xe8/0x900
 [ 2785.358852 ]        __cancel_work_timer+0x2c7/0x3f0
 [ 2785.359711 ]        mlx5_mkey_cache_cleanup+0xfb/0x250 [mlx5_ib]
 [ 2785.360781 ]        mlx5_ib_stage_pre_ib_reg_umr_cleanup+0x16/0x30 [mlx5_ib]
 [ 2785.361969 ]        __mlx5_ib_remove+0x68/0x120 [mlx5_ib]
 [ 2785.362960 ]        mlx5r_remove+0x63/0x80 [mlx5_ib]
 [ 2785.363870 ]        auxiliary_bus_remove+0x52/0x70
 [ 2785.364715 ]        device_release_driver_internal+0x3c1/0x600
 [ 2785.365695 ]        bus_remove_device+0x2a5/0x560
 [ 2785.366525 ]        device_del+0x492/0xb80
 [ 2785.367276 ]        mlx5_detach_device+0x1a9/0x360 [mlx5_core]
 [ 2785.368615 ]        mlx5_unload_one_devl_locked+0x5a/0x110 [mlx5_core]
 [ 2785.369934 ]        mlx5_devlink_reload_down+0x292/0x580 [mlx5_core]
 [ 2785.371292 ]        devlink_reload+0x439/0x590
 [ 2785.372075 ]        devlink_nl_cmd_reload+0xaef/0xff0
 [ 2785.372973 ]        genl_family_rcv_msg_doit.isra.0+0x1bd/0x290
 [ 2785.374011 ]        genl_rcv_msg+0x3ca/0x6c0
 [ 2785.374798 ]        netlink_rcv_skb+0x12c/0x360
 [ 2785.375612 ]        genl_rcv+0x24/0x40
 [ 2785.376295 ]        netlink_unicast+0x438/0x710
 [ 2785.377121 ]        netlink_sendmsg+0x7a1/0xca0
 [ 2785.377926 ]        sock_sendmsg+0xc5/0x190
 [ 2785.378668 ]        __sys_sendto+0x1bc/0x290
 [ 2785.379440 ]        __x64_sys_sendto+0xdc/0x1b0
 [ 2785.380255 ]        do_syscall_64+0x3d/0x90
 [ 2785.381031 ]        entry_SYSCALL_64_after_hwframe+0x46/0xb0
 [ 2785.381967 ]
 [ 2785.381967 ] other info that might help us debug this:
 [ 2785.381967 ]
 [ 2785.383448 ]  Possible unsafe locking scenario:
 [ 2785.383448 ]
 [ 2785.384544 ]        CPU0                    CPU1
 [ 2785.385383 ]        ----                    ----
 [ 2785.386193 ]   lock(&dev->cache.rb_lock);
 [ 2785.386940 ]				lock((work_completion)(&(&ent->dwork)->work));
 [ 2785.388327 ]				lock(&dev->cache.rb_lock);
 [ 2785.389425 ]   lock((work_completion)(&(&ent->dwork)->work));
 [ 2785.390414 ]
 [ 2785.390414 ]  *** DEADLOCK ***
 [ 2785.390414 ]
 [ 2785.391579 ] 6 locks held by devlink/53872:
 [ 2785.392341 ]  #0: ffffffff84c17a50 (cb_lock){++++}-{3:3}, at: genl_rcv+0x15/0x40
 [ 2785.393630 ]  #1: ffff888142280218 (&devlink->lock_key){+.+.}-{3:3}, at: devlink_get_from_attrs_lock+0x12d/0x2d0
 [ 2785.395324 ]  #2: ffff8881422d3c38 (&dev->lock_key){+.+.}-{3:3}, at: mlx5_unload_one_devl_locked+0x4a/0x110 [mlx5_core]
 [ 2785.397322 ]  #3: ffffffffa0e59068 (mlx5_intf_mutex){+.+.}-{3:3}, at: mlx5_detach_device+0x60/0x360 [mlx5_core]
 [ 2785.399231 ]  #4: ffff88810e3cb0e8 (&dev->mutex){....}-{3:3}, at: device_release_driver_internal+0x8d/0x600
 [ 2785.400864 ]  #5: ffff88817e8f1260 (&dev->cache.rb_lock){+.+.}-{3:3}, at: mlx5_mkey_cache_cleanup+0x77/0x250 [mlx5_ib]

Fixes: b958451 ("RDMA/mlx5: Change the cache structure to an RB-tree")
Signed-off-by: Shay Drory <shayd@nvidia.com>
Signed-off-by: Michael Guralnik <michaelgur@nvidia.com>
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
borkmann pushed a commit that referenced this pull request Oct 17, 2023
Petr Machata says:

====================
mlxsw: Control the order of blocks in ACL region

Amit Cohen writes:

For 12 key blocks in the A-TCAM, rules are split into two records, which
constitute two lookups. The two records are linked using a
"large entry key ID".

Due to a Spectrum-4 hardware issue, KVD entries that correspond to key
blocks 0 to 5 of 12 key blocks will be placed in the same KVD pipe if they
only differ in their "large entry key ID", as it is ignored. This results
in a reduced scale, we can insert less than 20k filters and get an error:

    $ tc -b flower.batch
    RTNETLINK answers: Input/output error
    We have an error talking to the kernel

To reduce the probability of this issue, we can place key blocks with
high entropy in blocks 0 to 5. The idea is to place blocks that are often
changed in blocks 0 to 5, for example, key blocks that match on IPv4
addresses or the LSBs of IPv6 addresses. Such placement will reduce the
probability of these blocks to be same.

Mark several blocks with 'high_entropy' flag and place them in blocks 0
to 5. Note that the list of the blocks is just a suggestion, I will verify
it with architects.

Currently, there is a one loop that chooses which blocks should be used
for a given list of elements and fills the blocks - when a block is
chosen, it fills it in the region. To be able to control the order of
the blocks, separate between searching blocks and filling them. Several
pre-changes are required.

Patch set overview:
Patch #1 marks several blocks with 'high_entropy' flag.
Patches #2-#4 prepare the code for filling blocks at the end of the search.
Patch #5 changes the loop to just choose the blocks and fill the blocks at
the end.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
borkmann pushed a commit that referenced this pull request Oct 17, 2023
Amit Cohen says:

====================
Extend VXLAN driver to support FDB flushing

The merge commit 9271686 ("Merge branch 'br-flush-filtering'") added
support for FDB flushing in bridge driver. Extend VXLAN driver to support
FDB flushing also. Add support for filtering by fields which are relevant
for VXLAN FDBs:
* Source VNI
* Nexthop ID
* 'router' flag
* Destination VNI
* Destination Port
* Destination IP

Without this set, flush for VXLAN device fails:
$ bridge fdb flush dev vx10
RTNETLINK answers: Operation not supported

With this set, such flush works with the relevant arguments, for example:
$ bridge fdb flush dev vx10 vni 5000 dst 193.2.2.1
< flush all vx10 entries with VNI 5000 and destination IP 193.2.2.1>

Some preparations are required, handle them before adding flushing support
in VXLAN driver. See more details in commit messages.

Patch set overview:
Patch #1 prepares flush policy to be used by VXLAN driver
Patches #2-#3 are preparations in VXLAN driver
Patch #4 adds an initial support for flushing in VXLAN driver
Patches #5-#9 add support for filtering by several attributes
Patch #10 adds a test for FDB flush with VXLAN
Patch #11 extends the test to check FDB flush with bridge
====================

Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
borkmann added a commit that referenced this pull request Oct 17, 2023
Andrii Nakryiko says:

====================
This patch set fixes ambiguity in BPF verifier log output of SCALAR register
in the parts that emit umin/umax, smin/smax, etc ranges. See patch #4 for
details.

Also, patch #5 fixes an issue with verifier log missing instruction context
(state) output for conditionals that trigger precision marking. See details in
the patch.

First two patches are just improvements to two selftests that are very flaky
locally when run in parallel mode.

Patch #3 changes 'align' selftest to be less strict about exact verifier log
output (which patch #4 changes, breaking lots of align tests as written). Now
test does more of a register substate checks, mostly around expected var_off()
values. This 'align' selftests is one of the more brittle ones and requires
constant adjustment when verifier log output changes, without really catching
any new issues. So hopefully these changes can minimize future support efforts
for this specific set of tests.
====================

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
borkmann pushed a commit that referenced this pull request Oct 20, 2023
Chuyi Zhou says:

====================
Add Open-coded task, css_task and css iters

This is version 6 of task, css_task and css iters support.

--- Changelog ---

v5 -> v6:

Patch #3:
 * In bpf_iter_task_next, return pos rather than goto out. (Andrii)
Patch #2, #3, #4:
 * Add the missing __diag_ignore_all to avoid kernel build warning
Patch #5, #6, #7:
 * Add Andrii's ack

Patch #8:
 * In BPF prog iter_css_task_for_each, return -EPERM rather than 0, and
   ensure stack_mprotect() in iters.c not success. If not, it would cause
   the subsequent 'test_lsm' fail, since the 'is_stack' check in
   test_int_hook(lsm.c) would not be guaranteed.
   (https://github.com/kernel-patches/bpf/actions/runs/6489662214/job/17624665086?pr=5790)

v4 -> v5:https://lore.kernel.org/lkml/20231007124522.34834-1-zhouchuyi@bytedance.com/

Patch 3~4:
 * Relax the BUILD_BUG_ON check in bpf_iter_task_new and bpf_iter_css_new to avoid
   netdev/build_32bit CI error.
   (https://netdev.bots.linux.dev/static/nipa/790929/13412333/build_32bit/stderr)
Patch 8:
 * Initialize skel pointer to fix the LLVM-16 build CI error
   (https://github.com/kernel-patches/bpf/actions/runs/6462875618/job/17545170863)

v3 -> v4:https://lore.kernel.org/all/20230925105552.817513-1-zhouchuyi@bytedance.com/

* Address all the comments from Andrii in patch-3 ~ patch-6
* Collect Tejun's ack
* Add a extra patch to rename bpf_iter_task.c to bpf_iter_tasks.c
* Seperate three BPF program files for selftests (iters_task.c iters_css_task.c iters_css.c)

v2 -> v3:https://lore.kernel.org/lkml/20230912070149.969939-1-zhouchuyi@bytedance.com/

Patch 1 (cgroup: Prepare for using css_task_iter_*() in BPF)
  * Add tj's ack and Alexei's suggest-by.
Patch 2 (bpf: Introduce css_task open-coded iterator kfuncs)
  * Use bpf_mem_alloc/bpf_mem_free rather than kzalloc()
  * Add KF_TRUSTED_ARGS for bpf_iter_css_task_new (Alexei)
  * Move bpf_iter_css_task's definition from uapi/linux/bpf.h to
    kernel/bpf/task_iter.c and we can use it from vmlinux.h
  * Move bpf_iter_css_task_XXX's declaration from bpf_helpers.h to
    bpf_experimental.h
Patch 3 (Introduce task open coded iterator kfuncs)
  * Change th API design keep consistent with SEC("iter/task"), support
    iterating all threads(BPF_TASK_ITERATE_ALL) and threads of a
    specific task (BPF_TASK_ITERATE_THREAD).(Andrii)
  * Move bpf_iter_task's definition from uapi/linux/bpf.h to
    kernel/bpf/task_iter.c and we can use it from vmlinux.h
  * Move bpf_iter_task_XXX's declaration from bpf_helpers.h to
    bpf_experimental.h
Patch 4 (Introduce css open-coded iterator kfuncs)
  * Change th API design keep consistent with cgroup_iters, reuse
    BPF_CGROUP_ITER_DESCENDANTS_PRE/BPF_CGROUP_ITER_DESCENDANTS_POST
    /BPF_CGROUP_ITER_ANCESTORS_UP(Andrii)
  * Add KF_TRUSTED_ARGS for bpf_iter_css_new
  * Move bpf_iter_css's definition from uapi/linux/bpf.h to
    kernel/bpf/task_iter.c and we can use it from vmlinux.h
  * Move bpf_iter_css_XXX's declaration from bpf_helpers.h to
    bpf_experimental.h
Patch 5 (teach the verifier to enforce css_iter and task_iter in RCU CS)
  * Add KF flag KF_RCU_PROTECTED to maintain kfuncs which need RCU CS.(Andrii)
  * Consider STACK_ITER when using bpf_for_each_spilled_reg.
Patch 6 (Let bpf_iter_task_new accept null task ptr)
  * Add this extra patch to let bpf_iter_task_new accept a 'nullable'
  * task pointer(Andrii)
Patch 7 (selftests/bpf: Add tests for open-coded task and css iter)
  * Add failure testcase(Alexei)

Changes from v1(https://lore.kernel.org/lkml/20230827072057.1591929-1-zhouchuyi@bytedance.com/):
- Add a pre-patch to make some preparations before supporting css_task
  iters.(Alexei)
- Add an allowlist for css_task iters(Alexei)
- Let bpf progs do explicit bpf_rcu_read_lock() when using process
  iters and css_descendant iters.(Alexei)
---------------------

In some BPF usage scenarios, it will be useful to iterate the process and
css directly in the BPF program. One of the expected scenarios is
customizable OOM victim selection via BPF[1].

Inspired by Dave's task_vma iter[2], this patchset adds three types of
open-coded iterator kfuncs:

1. bpf_task_iters. It can be used to
1) iterate all process in the system, like for_each_forcess() in kernel.
2) iterate all threads in the system.
3) iterate all threads of a specific task

2. bpf_css_iters. It works like css_task_iter_{start, next, end} and would
be used to iterating tasks/threads under a css.

3. css_iters. It works like css_next_descendant_{pre, post} to iterating all
descendant css.

BPF programs can use these kfuncs directly or through bpf_for_each macro.

link[1]: https://lore.kernel.org/lkml/20230810081319.65668-1-zhouchuyi@bytedance.com/
link[2]: https://lore.kernel.org/all/20230810183513.684836-1-davemarchevsky@fb.com/
====================

Link: https://lore.kernel.org/r/20231018061746.111364-1-zhouchuyi@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
borkmann pushed a commit that referenced this pull request Oct 23, 2023
Hou Tao says:

====================
bpf: Fixes for per-cpu kptr

From: Hou Tao <houtao1@huawei.com>

Hi,

The patchset aims to fix the problems found in the review of per-cpu
kptr patch-set [0]. Patch #1 moves pcpu_lock after the invocation of
pcpu_chunk_addr_search() and it is a micro-optimization for
free_percpu(). The reason includes it in the patch is that the same
logic is used in newly-added API pcpu_alloc_size(). Patch #2 introduces
pcpu_alloc_size() for dynamic per-cpu area. Patch #2 and #3 use
pcpu_alloc_size() to check whether or not unit_size matches with the
size of underlying per-cpu area and to select a matching bpf_mem_cache.
Patch #4 fixes the freeing of per-cpu kptr when these kptrs are freed by
map destruction. The last patch adds test cases for these problems.

Please see individual patches for details. And comments are always
welcome.

Change Log:
v3:
 * rebased on bpf-next
 * patch 2: update API document to note that pcpu_alloc_size() doesn't
            support statically allocated per-cpu area. (Dennis)
 * patch 1 & 2: add Acked-by from Dennis

v2: https://lore.kernel.org/bpf/20231018113343.2446300-1-houtao@huaweicloud.com/
  * add a new patch "don't acquire pcpu_lock for pcpu_chunk_addr_search()"
  * patch 2: change type of bit_off and end to unsigned long (Andrew)
  * patch 2: rename the new API as pcpu_alloc_size and follow 80-column convention (Dennis)
  * patch 5: move the common declaration into bpf.h (Stanislav, Alxei)

v1: https://lore.kernel.org/bpf/20231007135106.3031284-1-houtao@huaweicloud.com/

[0]: https://lore.kernel.org/bpf/20230827152729.1995219-1-yonghong.song@linux.dev
====================

Link: https://lore.kernel.org/r/20231020133202.4043247-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
borkmann pushed a commit that referenced this pull request Oct 24, 2023
Eduard Zingerman says:

====================
exact states comparison for iterator convergence checks

Iterator convergence logic in is_state_visited() uses state_equals()
for states with branches counter > 0 to check if iterator based loop
converges. This is not fully correct because state_equals() relies on
presence of read and precision marks on registers. These marks are not
guaranteed to be finalized while state has branches.
Commit message for patch #3 describes a program that exhibits such
behavior.

This patch-set aims to fix iterator convergence logic by adding notion
of exact states comparison. Exact comparison does not rely on presence
of read or precision marks and thus is more strict.
As explained in commit message for patch #3 exact comparisons require
addition of speculative register bounds widening. The end result for
BPF verifier users could be summarized as follows:

(!) After this update verifier would reject programs that conjure an
    imprecise value on the first loop iteration and use it as precise
    on the second (for iterator based loops).

I urge people to at least skim over the commit message for patch #3.

Patches are organized as follows:
- patches #1,2: moving/extracting utility functions;
- patch #3: introduces exact mode for states comparison and adds
  widening heuristic;
- patch #4: adds test-cases that demonstrate why the series is
  necessary;
- patch #5: extends patch #3 with a notion of state loop entries,
  these entries have to be tracked to correctly identify that
  different verifier states belong to the same states loop;
- patch #6: adds a test-case that demonstrates a program
  which requires loop entry tracking for correct verification;
- patch #7: just adds a few debug prints.

The following actions are planned as a followup for this patch-set:
- implementation has to be adapted for callbacks handling logic as a
  part of a fix for [1];
- it is necessary to explore ways to improve widening heuristic to
  handle iters_task_vma test w/o need to insert barrier_var() calls;
- explored states eviction logic on cache miss has to be extended
  to either:
  - allow eviction of checkpoint states -or-
  - be sped up in case if there are many active checkpoints associated
    with the same instruction.

The patch-set is a followup for mailing list discussion [1].

Changelog:
- V2 [3] -> V3:
  - correct check for stack spills in widen_imprecise_scalars(),
    added test case progs/iters.c:widen_spill to check the behavior
    (suggested by Andrii);
  - allow eviction of checkpoint states in is_state_visited() to avoid
    pathological verifier performance when iterator based loop does not
    converge (discussion with Alexei).
- V1 [2] -> V2, applied changes suggested by Alexei offlist:
  - __explored_state() function removed;
  - same_callsites() function is now used in clean_live_states();
  - patches #1,2 are added as preparatory code movement;
  - in process_iter_next_call() a safeguard is added to verify that
    cur_st->parent exists and has expected insn index / call sites.

[1] https://lore.kernel.org/bpf/97a90da09404c65c8e810cf83c94ac703705dc0e.camel@gmail.com/
[2] https://lore.kernel.org/bpf/20231021005939.1041-1-eddyz87@gmail.com/
[3] https://lore.kernel.org/bpf/20231022010812.9201-1-eddyz87@gmail.com/
====================

Link: https://lore.kernel.org/r/20231024000917.12153-1-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
borkmann pushed a commit that referenced this pull request Oct 27, 2023
Sachin reported a warning when running the inject-ra-err selftest:

  # selftests: powerpc/mce: inject-ra-err
  Disabling lock debugging due to kernel taint
  MCE: CPU19: machine check (Severe)  Real address Load/Store (foreign/control memory) [Not recovered]
  MCE: CPU19: PID: 5254 Comm: inject-ra-err NIP: [0000000010000e48]
  MCE: CPU19: Initiator CPU
  MCE: CPU19: Unknown
  ------------[ cut here ]------------
  WARNING: CPU: 19 PID: 5254 at arch/powerpc/mm/book3s64/radix_tlb.c:1221 radix__tlb_flush+0x160/0x180
  CPU: 19 PID: 5254 Comm: inject-ra-err Kdump: loaded Tainted: G   M        E      6.6.0-rc3-00055-g9ed22ae6be81 #4
  Hardware name: IBM,9080-HEX POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1030.20 (NH1030_058) hv:phyp pSeries
  ...
  NIP radix__tlb_flush+0x160/0x180
  LR  radix__tlb_flush+0x104/0x180
  Call Trace:
    radix__tlb_flush+0xf4/0x180 (unreliable)
    tlb_finish_mmu+0x15c/0x1e0
    exit_mmap+0x1a0/0x510
    __mmput+0x60/0x1e0
    exit_mm+0xdc/0x170
    do_exit+0x2bc/0x5a0
    do_group_exit+0x4c/0xc0
    sys_exit_group+0x28/0x30
    system_call_exception+0x138/0x330
    system_call_vectored_common+0x15c/0x2ec

And bisected it to commit e43c0a0 ("powerpc/64s/radix: combine
final TLB flush and lazy tlb mm shootdown IPIs"), which added a warning
in radix__tlb_flush() if mm->context.copros is still elevated.

However it's possible for the copros count to be elevated if a process
exits without first closing file descriptors that are associated with a
copro, eg. VAS.

If the process exits with a VAS file still open, the release callback
is queued up for exit_task_work() via:
  exit_files()
    put_files_struct()
      close_files()
        filp_close()
          fput()

And called via:
  exit_task_work()
    ____fput()
      __fput()
        file->f_op->release(inode, file)
          coproc_release()
            vas_user_win_ops->close_win()
              vas_deallocate_window()
                mm_context_remove_vas_window()
                  mm_context_remove_copro()

But that is after exit_mm() has been called from do_exit() and triggered
the warning.

Fix it by dropping the warning, and always calling __flush_all_mm().

In the normal case of no copros, that will result in a call to
_tlbiel_pid(mm->context.id, RIC_FLUSH_ALL) just as the current code
does.

If the copros count is elevated then it will cause a global flush, which
should flush translations from any copros. Note that the process table
entry was cleared in arch_exit_mmap(), so copros should not be able to
fetch any new translations.

Fixes: e43c0a0 ("powerpc/64s/radix: combine final TLB flush and lazy tlb mm shootdown IPIs")
Reported-by: Sachin Sant <sachinp@linux.ibm.com>
Closes: https://lore.kernel.org/all/A8E52547-4BF1-47CE-8AEA-BC5A9D7E3567@linux.ibm.com/
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Link: https://msgid.link/20231017121527.1574104-1-mpe@ellerman.id.au
borkmann pushed a commit that referenced this pull request Oct 27, 2023
Jiri Pirko says:

====================
devlink: fix a deadlock when taking devlink instance lock while holding RTNL lock

devlink_port_fill() may be called sometimes with RTNL lock held.
When putting the nested port function devlink instance attrs,
current code takes nested devlink instance lock. In that case lock
ordering is wrong.

Patch #1 is a dependency of patch #2.
Patch #2 converts the peernet2id_alloc() call to rely in RCU so it could
         called without devlink instance lock.
Patch #3 takes device reference for devlink instance making sure that
         device does not disappear before devlink_release() is called.
Patch #4 benefits from the preparations done in patches #2 and #3 and
         removes the problematic nested devlink lock aquisition.
Patched #5-#7 improve documentation to reflect this issue so it is
              avoided in the future.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

7 participants