forked from torvalds/linux
-
-
Notifications
You must be signed in to change notification settings - Fork 1
[CI run] bpf: Set flow flag to allow any source IP in bpf_tunnel_key #2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
f71daf5 to
f5f49cc
Compare
pchaigno
pushed a commit
that referenced
this pull request
Jul 12, 2022
This was missed in c3ed222 ("NFSv4: Fix free of uninitialized nfs4_label on referral lookup.") and causes a panic when mounting with '-o trunkdiscovery': PID: 1604 TASK: ffff93dac3520000 CPU: 3 COMMAND: "mount.nfs" #0 [ffffb79140f738f8] machine_kexec at ffffffffaec64bee #1 [ffffb79140f73950] __crash_kexec at ffffffffaeda67fd #2 [ffffb79140f73a18] crash_kexec at ffffffffaeda76ed #3 [ffffb79140f73a30] oops_end at ffffffffaec2658d #4 [ffffb79140f73a50] general_protection at ffffffffaf60111e [exception RIP: nfs_fattr_init+0x5] RIP: ffffffffc0c18265 RSP: ffffb79140f73b08 RFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff93dac304a800 RCX: 0000000000000000 RDX: ffffb79140f73bb0 RSI: ffff93dadc8cbb40 RDI: d03ee11cfaf6bd50 RBP: ffffb79140f73be8 R8: ffffffffc0691560 R9: 0000000000000006 R10: ffff93db3ffd3df8 R11: 0000000000000000 R12: ffff93dac4040000 R13: ffff93dac2848e00 R14: ffffb79140f73b60 R15: ffffb79140f73b30 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #5 [ffffb79140f73b08] _nfs41_proc_get_locations at ffffffffc0c73d53 [nfsv4] #6 [ffffb79140f73bf0] nfs4_proc_get_locations at ffffffffc0c83e90 [nfsv4] #7 [ffffb79140f73c60] nfs4_discover_trunking at ffffffffc0c83fb7 [nfsv4] #8 [ffffb79140f73cd8] nfs_probe_fsinfo at ffffffffc0c0f95f [nfs] #9 [ffffb79140f73da0] nfs_probe_server at ffffffffc0c1026a [nfs] RIP: 00007f6254fce26e RSP: 00007ffc69496ac8 RFLAGS: 00000246 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f6254fce26e RDX: 00005600220a82a0 RSI: 00005600220a64d0 RDI: 00005600220a6520 RBP: 00007ffc69496c50 R8: 00005600220a8710 R9: 003035322e323231 R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffc69496c50 R13: 00005600220a8440 R14: 0000000000000010 R15: 0000560020650ef9 ORIG_RAX: 00000000000000a5 CS: 0033 SS: 002b Fixes: c3ed222 ("NFSv4: Fix free of uninitialized nfs4_label on referral lookup.") Signed-off-by: Scott Mayhew <smayhew@redhat.com> Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
This commit extends the ip_tunnel_key struct with a new field for the flow flags, to pass them to the route lookups. This new field will be populated and used in subsequent commits. Signed-off-by: Paul Chaignon <paul@isovalent.com>
Use the new ip_tunnel_key field with the flow flags in the route lookups for the encapsulated packet. This will be used by the bpf_skb_set_tunnel_key helper in a subsequent commit. Signed-off-by: Paul Chaignon <paul@isovalent.com>
Use the new ip_tunnel_key field with the flow flags in the route lookups for the encapsulated packet. This will be used by the bpf_skb_set_tunnel_key helper in the subsequent commit. Signed-off-by: Paul Chaignon <paul@isovalent.com>
Commit 26101f5 ("bpf: Add source ip in "struct bpf_tunnel_key"") added support for getting and setting the outer source IP of encapsulated packets via the bpf_skb_{get,set}_tunnel_key BPF helper. This change allows BPF programs to set any IP address as the source, including for example the IP address of a container running on the same host. In that last case, however, the encapsulated packets are dropped when looking up the route because the source IP address isn't assigned to any interface on the host. To avoid this, we need to set the FLOWI_FLAG_ANYSRC flag. Fixes: 26101f5 ("bpf: Add source ip in "struct bpf_tunnel_key"") Signed-off-by: Paul Chaignon <paul@isovalent.com>
f5f49cc to
35c55a5
Compare
pchaigno
pushed a commit
that referenced
this pull request
Jul 12, 2022
Perform the same virtual address to file offset translation that libbpf is doing for executable ELF binaries also for shared libraries. Currently libbpf is making a simplifying and sometimes wrong assumption that for shared libraries relative virtual addresses inside ELF are always equal to file offsets. Unfortunately, this is not always the case with LLVM's lld linker, which now by default generates quite more complicated ELF segments layout. E.g., for liburandom_read.so from selftests/bpf, here's an excerpt from readelf output listing ELF segments (a.k.a. program headers): Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align PHDR 0x000040 0x0000000000000040 0x0000000000000040 0x0001f8 0x0001f8 R 0x8 LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x0005e4 0x0005e4 R 0x1000 LOAD 0x0005f0 0x00000000000015f0 0x00000000000015f0 0x000160 0x000160 R E 0x1000 LOAD 0x000750 0x0000000000002750 0x0000000000002750 0x000210 0x000210 RW 0x1000 LOAD 0x000960 0x0000000000003960 0x0000000000003960 0x000028 0x000029 RW 0x1000 Compare that to what is generated by GNU ld (or LLVM lld's with extra -znoseparate-code argument which disables this cleverness in the name of file size reduction): Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x000550 0x000550 R 0x1000 LOAD 0x001000 0x0000000000001000 0x0000000000001000 0x000131 0x000131 R E 0x1000 LOAD 0x002000 0x0000000000002000 0x0000000000002000 0x0000ac 0x0000ac R 0x1000 LOAD 0x002dc0 0x0000000000003dc0 0x0000000000003dc0 0x000262 0x000268 RW 0x1000 You can see from the first example above that for executable (Flg == "R E") PT_LOAD segment (LOAD #2), Offset doesn't match VirtAddr columns. And it does in the second case (GNU ld output). This is important because all the addresses, including USDT specs, operate in a virtual address space, while kernel is expecting file offsets when performing uprobe attach. So such mismatches have to be properly taken care of and compensated by libbpf, which is what this patch is fixing. Also patch clarifies few function and variable names, as well as updates comments to reflect this important distinction (virtaddr vs file offset) and to ephasize that shared libraries are not all that different from executables in this regard. This patch also changes selftests/bpf Makefile to force urand_read and liburand_read.so to be built with Clang and LLVM's lld (and explicitly request this ELF file size optimization through -znoseparate-code linker parameter) to validate libbpf logic and ensure regressions don't happen in the future. I've bundled these selftests changes together with libbpf changes to keep the above description tied with both libbpf and selftests changes. Fixes: 74cc631 ("libbpf: Add USDT notes parsing and resolution logic") Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20220616055543.3285835-1-andrii@kernel.org
pchaigno
pushed a commit
that referenced
this pull request
Jul 12, 2022
Ido Schimmel says: ==================== mlxsw: L3 HW stats improvements While testing L3 HW stats [1] on top of mlxsw, two issues were found: 1. Stats cannot be enabled for more than 205 netdevs. This was fixed in commit 4b7a632 ("mlxsw: spectrum_cnt: Reorder counter pools"). 2. ARP packets are counted as errors. Patch #1 takes care of that. See the commit message for details. The goal of the majority of the rest of the patches is to add selftests that would have discovered that only about 205 netdevs can have L3 HW stats supported, despite the HW supporting much more. The obvious place to plug this in is the scale test framework. The scale tests are currently testing two things: that some number of instances of a given resource can actually be created; and that when an attempt is made to create more than the supported amount, the failures are noted and handled gracefully. However the ability to allocate the resource does not mean that the resource actually works when passing traffic. For that, make it possible for a given scale to also test traffic. To that end, this patchset adds traffic tests. The goal of these is to run traffic and observe whether a sample of the allocated resource instances actually perform their task. Traffic tests are only run on the positive leg of the scale test (no point trying to pass traffic when the expected outcome is that the resource will not be allocated). They are opt-in, if a given test does not expose it, it is not run. The patchset proceeds as follows: - Patches #2 and #3 add to "devlink resource" support for number of allocated RIFs, and the capacity. This is necessary, because when evaluating how many L3 HW stats instances it should be possible to allocate, the limiting resource on Spectrum-2 and above currently is not the counters themselves, but actually the RIFs. - Patch #6 adds support for invocation of a traffic test, if a given scale tests exposes it. - Patch #7 adds support for skipping a given scale test. Because on Spectrum-2 and above, the limiting factor to L3 HW stats instances is actually the number of RIFs, there is no point in running the failing leg of a scale tests, because it would test exhaustion of RIFs, not of RIF counters. - With patch #8, the scale tests drivers pass the target number to the cleanup function of a scale test. - In patch #9, add a traffic test to the tc_flower selftests. This makes sure that the flow counters installed with the ACLs actually do count as they are supposed to. - In patch #10, add a new scale selftest for RIF counter scale, including a traffic test. - In patch #11, the scale target for the tc_flower selftest is dynamically set instead of being hard coded. [1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ca0a53dcec9495d1dc5bbc369c810c520d728373 ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
pchaigno
pushed a commit
that referenced
this pull request
Jul 12, 2022
Rework MDIO locking to avoid potential circular locking: WARNING: possible circular locking dependency detected 5.19.0-rc1-ar9331-00017-g3ab364c7c48c #5 Not tainted ------------------------------------------------------ kworker/u2:4/68 is trying to acquire lock: 81f3c83c (ar9331:1005:(&ar9331_mdio_regmap_config)->lock){+.+.}-{4:4}, at: regmap_write+0x50/0x8c but task is already holding lock: 81f60494 (&bus->mdio_lock){+.+.}-{4:4}, at: mdiobus_read+0x40/0x78 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&bus->mdio_lock){+.+.}-{4:4}: lock_acquire+0x2d4/0x360 __mutex_lock+0xf8/0x384 mutex_lock_nested+0x2c/0x38 mdiobus_write+0x44/0x80 ar9331_sw_bus_write+0x50/0xe4 _regmap_raw_write_impl+0x604/0x724 _regmap_bus_raw_write+0x9c/0xb4 _regmap_write+0xdc/0x1a0 _regmap_update_bits+0xf4/0x118 _regmap_select_page+0x108/0x138 _regmap_raw_read+0x25c/0x288 _regmap_bus_read+0x60/0x98 _regmap_read+0xd4/0x1b0 _regmap_update_bits+0xc4/0x118 regmap_update_bits_base+0x64/0x8c ar9331_sw_irq_bus_sync_unlock+0x40/0x6c __irq_set_handler+0x7c/0xac ar9331_sw_irq_map+0x48/0x7c irq_domain_associate+0x174/0x208 irq_create_mapping_affinity+0x1a8/0x230 ar9331_sw_probe+0x22c/0x388 mdio_probe+0x44/0x70 really_probe+0x200/0x424 __driver_probe_device+0x290/0x298 driver_probe_device+0x54/0xe4 __device_attach_driver+0xe4/0x130 bus_for_each_drv+0xb4/0xd8 __device_attach+0x104/0x1a4 bus_probe_device+0x48/0xc4 device_add+0x600/0x800 mdio_device_register+0x68/0xa0 of_mdiobus_register+0x2bc/0x3c4 ag71xx_probe+0x6e4/0x984 platform_probe+0x78/0xd0 really_probe+0x200/0x424 __driver_probe_device+0x290/0x298 driver_probe_device+0x54/0xe4 __driver_attach+0x17c/0x190 bus_for_each_dev+0x8c/0xd0 bus_add_driver+0x110/0x228 driver_register+0xe4/0x12c do_one_initcall+0x104/0x2a0 kernel_init_freeable+0x250/0x288 kernel_init+0x34/0x130 ret_from_kernel_thread+0x14/0x1c -> #0 (ar9331:1005:(&ar9331_mdio_regmap_config)->lock){+.+.}-{4:4}: check_noncircular+0x88/0xc0 __lock_acquire+0x10bc/0x18bc lock_acquire+0x2d4/0x360 __mutex_lock+0xf8/0x384 mutex_lock_nested+0x2c/0x38 regmap_write+0x50/0x8c ar9331_sw_mbus_read+0x74/0x1b8 __mdiobus_read+0x90/0xec mdiobus_read+0x50/0x78 get_phy_device+0xa0/0x18c fwnode_mdiobus_register_phy+0x120/0x1d4 of_mdiobus_register+0x244/0x3c4 devm_of_mdiobus_register+0xe8/0x100 ar9331_sw_setup+0x16c/0x3a0 dsa_register_switch+0x7dc/0xcc0 ar9331_sw_probe+0x370/0x388 mdio_probe+0x44/0x70 really_probe+0x200/0x424 __driver_probe_device+0x290/0x298 driver_probe_device+0x54/0xe4 __device_attach_driver+0xe4/0x130 bus_for_each_drv+0xb4/0xd8 __device_attach+0x104/0x1a4 bus_probe_device+0x48/0xc4 deferred_probe_work_func+0xf0/0x10c process_one_work+0x314/0x4d4 worker_thread+0x2a4/0x354 kthread+0x134/0x13c ret_from_kernel_thread+0x14/0x1c other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&bus->mdio_lock); lock(ar9331:1005:(&ar9331_mdio_regmap_config)->lock); lock(&bus->mdio_lock); lock(ar9331:1005:(&ar9331_mdio_regmap_config)->lock); *** DEADLOCK *** 5 locks held by kworker/u2:4/68: #0: 81c04eb4 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work+0x1e4/0x4d4 #1: 81f0de78 (deferred_probe_work){+.+.}-{0:0}, at: process_one_work+0x1e4/0x4d4 #2: 81f0a88 (&dev->mutex){....}-{4:4}, at: __device_attach+0x40/0x1a4 #3: 80c8aee0 (dsa2_mutex){+.+.}-{4:4}, at: dsa_register_switch+0x5c/0xcc0 #4: 81f60494 (&bus->mdio_lock){+.+.}-{4:4}, at: mdiobus_read+0x40/0x78 stack backtrace: CPU: 0 PID: 68 Comm: kworker/u2:4 Not tainted 5.19.0-rc1-ar9331-00017-g3ab364c7c48c #5 Workqueue: events_unbound deferred_probe_work_func Stack : 00000056 800d4638 81f0d64c 00000004 00000018 00000000 80a20000 80a20000 80937590 81ef3858 81f0d760 3913578a 00000005 8045e824 81f0d600 a8db84cc 00000000 00000000 80937590 00000a44 00000000 00000002 00000001 ffffffff 81f0d6a4 80982d7c 0000000f 20202020 80a20000 00000001 80937590 81ef3858 81f0d760 3913578a 00000005 00000005 00000000 03bd0000 00000000 80e00000 ... Call Trace: [<80069db0>] show_stack+0x94/0x130 [<8045e824>] dump_stack_lvl+0x54/0x8c [<800c7fac>] check_noncircular+0x88/0xc0 [<800ca068>] __lock_acquire+0x10bc/0x18bc [<800cb478>] lock_acquire+0x2d4/0x360 [<807b84c4>] __mutex_lock+0xf8/0x384 [<807b877c>] mutex_lock_nested+0x2c/0x38 [<804ea640>] regmap_write+0x50/0x8c [<80501e38>] ar9331_sw_mbus_read+0x74/0x1b8 [<804fe9a0>] __mdiobus_read+0x90/0xec [<804feac4>] mdiobus_read+0x50/0x78 [<804fcf74>] get_phy_device+0xa0/0x18c [<804ffeb4>] fwnode_mdiobus_register_phy+0x120/0x1d4 [<805004f0>] of_mdiobus_register+0x244/0x3c4 [<804f0c50>] devm_of_mdiobus_register+0xe8/0x100 [<805017a0>] ar9331_sw_setup+0x16c/0x3a0 [<807355c8>] dsa_register_switch+0x7dc/0xcc0 [<80501468>] ar9331_sw_probe+0x370/0x388 [<804ff0c0>] mdio_probe+0x44/0x70 [<804d1848>] really_probe+0x200/0x424 [<804d1cfc>] __driver_probe_device+0x290/0x298 [<804d1d58>] driver_probe_device+0x54/0xe4 [<804d2298>] __device_attach_driver+0xe4/0x130 [<804cf048>] bus_for_each_drv+0xb4/0xd8 [<804d200c>] __device_attach+0x104/0x1a4 [<804d026c>] bus_probe_device+0x48/0xc4 [<804d108c>] deferred_probe_work_func+0xf0/0x10c [<800a0ffc>] process_one_work+0x314/0x4d4 [<800a17fc>] worker_thread+0x2a4/0x354 [<800a9a54>] kthread+0x134/0x13c [<8006306c>] ret_from_kernel_thread+0x14/0x1c [ Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de> Link: https://lore.kernel.org/r/20220616112550.877118-1-o.rempel@pengutronix.de Signed-off-by: Jakub Kicinski <kuba@kernel.org>
pchaigno
pushed a commit
that referenced
this pull request
Jul 12, 2022
Ido Schimmel says: ==================== mlxsw: Unified bridge conversion - part 2/6 This is the second part of the conversion of mlxsw to the unified bridge model. Part 1 was merged in commit 4336487 ("Merge branch 'mlxsw-unified-bridge-conversion-part-1'") which includes details about the new model and the motivation behind the conversion. This patchset does not begin the conversion, but rather prepares the code base for it. Patchset overview: Patch #1 removes an unnecessary field from one of the FID families. Patches #2-#7 make various improvements in the layer 2 multicast code, making it more receptive towards upcoming changes. Patches #8-#10 prepare the CONFIG_PROFILE command for the unified bridge model. This command will be used to enable the new model in the last patchset. Patches #11-torvalds#13 perform small changes in the FID code, preparing it for upcoming changes. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
pchaigno
pushed a commit
that referenced
this pull request
Jul 12, 2022
Frank Jungclaus says: ==================== All following 5 patches must be seen as preparation for adding support of the newly available esd CAN-USB/3 to esd_usb2.c. After having gained some confidence and experience on sending patches to linux-can@vger.kernel.org, I'll again submit the code changes for CAN-USB/3 support as step #2. ==================== Link: https://lore.kernel.org/all/20220624190517.2299701-1-frank.jungclaus@esd.eu Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
pchaigno
pushed a commit
that referenced
this pull request
Jul 12, 2022
Ido Schimmel says:
====================
mlxsw: Unified bridge conversion - part 4/6
This is the fourth part of the conversion of mlxsw to the unified bridge
model.
Unlike previous parts that prepared mlxsw for the conversion, this part
actually starts the conversion. It focuses on flooding configuration and
converts mlxsw to the more "raw" APIs of the unified bridge model.
The patches configure the different stages of the flooding pipeline in
Spectrum that looks as follows (at a high-level):
+------------+ +----------+ +-------+
{FID, | | {Packet type, | | | | MID
DMAC} | FDB lookup | Bridge type} | SFGC | MID base | | Index
+--------> (miss) +----------------> register +-----------> Adder +------->
| | | | | |
| | | | | |
+------------+ +----+-----+ +---^---+
| |
Table | |
type | | Offset
| +-------+ |
| | | |
| | | |
+----->+ Mux +------+
| |
| |
+-^---^-+
| |
FID| |FID
| |offset
+ +
The multicast identifier (MID) index is used as an index to the port
group table (PGT) that contains a bitmap of ports via which a packet
needs to be replicated.
From the PGT table, the packet continues to the multicast port egress
(MPE) table that determines the packet's egress VLAN. This is a
two-dimensional table that is indexed by port and switch multicast port
to egress (SMPE) index. The latter can be thought of as a FID. Without
it, all the packets replicated via a certain port would get the same
VLAN, regardless of the bridge domain (FID).
Logically, these two steps look as follows:
PGT table MPE table
+-----------------------+ +---------------+
| | {Local port, | | Egress
MID index | Local ports bitmap #1 | SMPE index} | | VID
+------------> ... +---------------> +-------->
| Local ports bitmap #N | | |
| | SMPE | |
+-----------------------+ +---------------+
Local port
Patchset overview:
Patch #1 adds a variable to guard against mixed model configuration.
Will be removed in part 6 when mlxsw is fully converted to the unified
model.
Patches #2-#5 introduce two new FID attributes required for flooding
configuration in the new model:
1. 'flood_rsp': Instructs the firmware to handle flooding configuration
for this FID. Only set for router FIDs (rFIDs) which are used to connect
a {Port, VLAN} to the router block.
2. 'bridge_type': Allows the device to determine the flood table (i.e.,
base index to the PGT table) for the FID. The first type will be used
for FIDs in a VLAN-aware bridge and the second for FIDs representing
VLAN-unaware bridges.
Patch #6 configures the MPE table that determines the egress VLAN of a
packet that is forwarded according to L2 multicast / flood.
Patches #7-#11 add the PGT table and related APIs to allocate entries
and set / clear ports in them.
Patches #12-torvalds#13 convert the flooding configuration to use the new PGT
APIs.
====================
Link: https://lore.kernel.org/r/20220627070621.648499-1-idosch@nvidia.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
pchaigno
pushed a commit
that referenced
this pull request
Jul 12, 2022
Ido Schimmel says: ==================== mlxsw: Unified bridge conversion - part 6/6 This is the sixth and final part of the conversion of mlxsw to the unified bridge model. It transitions the last bits of functionality that were under firmware's responsibility in the legacy model to the driver. The last patches flip the driver to the unified bridge model and clean up code that was used to make the conversion easier to review. Patchset overview: Patch #1 sets the egress VID for known unicast packets. For multicast packets, the egress VID is configured using the MPE table. See commit 8c2da08 ("mlxsw: spectrum_fid: Configure egress VID classification for multicast"). Patch #2 configures the VNI to FID classification that is used during decapsulation. Patch #3 configures ingress router interface (RIF) in FID classification records, so that when a packet reaches the router block, its ingress RIF is known. Care is taken to configure this in all the different flows (e.g., RIF set on a FID, {Port, VID} joins a FID that already has a RIF etc.). Patch #4 configures the egress VID for routed packets. For such packets, the egress VID is not set by the MPE table or by an FDB record at the egress bridge, but instead by a dedicated table that maps {Egress RIF, Egress port} to a VID. Patch #5 removes VID configuration from RIF creation as in the unified bridge model firmware no longer needs it. Patch #6 sets the egress FID to use in RIF configuration so that the device knows using which FID to bridge the packet after routing. Patches #7-#9 add a new 802.1Q family and associated VLAN RIFs. In the unified bridge model, we no longer need to emulate 802.1Q FIDs using 802.1D FIDs as VNI can be associated with both. Patches #10-#11 finally flip the driver to the unified bridge model. Patches #12-torvalds#13 clean up code that was used to make the conversion easier to review. v2: * Fix build failure [1] in patch #1. [1] https://lore.kernel.org/netdev/20220630201709.6e66a1bb@kernel.org/ ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
pchaigno
pushed a commit
that referenced
this pull request
Jul 25, 2022
…tion Each cset (css_set) is pinned by its tasks. When we're moving tasks around across csets for a migration, we need to hold the source and destination csets to ensure that they don't go away while we're moving tasks about. This is done by linking cset->mg_preload_node on either the mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the same cset->mg_preload_node for both the src and dst lists was deemed okay as a cset can't be both the source and destination at the same time. Unfortunately, this overloading becomes problematic when multiple tasks are involved in a migration and some of them are identity noop migrations while others are actually moving across cgroups. For example, this can happen with the following sequence on cgroup1: #1> mkdir -p /sys/fs/cgroup/misc/a/b #2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs #3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS & #4> PID=$! #5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks #6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs the process including the group leader back into a. In this final migration, non-leader threads would be doing identity migration while the group leader is doing an actual one. After #3, let's say the whole process was in cset A, and that after #4, the leader moves to cset B. Then, during #6, the following happens: 1. cgroup_migrate_add_src() is called on B for the leader. 2. cgroup_migrate_add_src() is called on A for the other threads. 3. cgroup_migrate_prepare_dst() is called. It scans the src list. 4. It notices that B wants to migrate to A, so it tries to A to the dst list but realizes that its ->mg_preload_node is already busy. 5. and then it notices A wants to migrate to A as it's an identity migration, it culls it by list_del_init()'ing its ->mg_preload_node and putting references accordingly. 6. The rest of migration takes place with B on the src list but nothing on the dst list. This means that A isn't held while migration is in progress. If all tasks leave A before the migration finishes and the incoming task pins it, the cset will be destroyed leading to use-after-free. This is caused by overloading cset->mg_preload_node for both src and dst preload lists. We wanted to exclude the cset from the src list but ended up inadvertently excluding it from the dst list too. This patch fixes the issue by separating out cset->mg_preload_node into ->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst preloadings don't interfere with each other. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Mukesh Ojha <quic_mojha@quicinc.com> Reported-by: shisiyuan <shisiyuan19870131@gmail.com> Link: http://lkml.kernel.org/r/1654187688-27411-1-git-send-email-shisiyuan@xiaomi.com Link: https://www.spinics.net/lists/cgroups/msg33313.html Fixes: f817de9 ("cgroup: prepare migration path for unified hierarchy") Cc: stable@vger.kernel.org # v3.16+
pchaigno
pushed a commit
that referenced
this pull request
Jul 25, 2022
…nline extents When doing a direct IO read or write, we always return -ENOTBLK when we find a compressed extent (or an inline extent) so that we fallback to buffered IO. This however is not ideal in case we are in a NOWAIT context (io_uring for example), because buffered IO can block and we currently have no support for NOWAIT semantics for buffered IO, so if we need to fallback to buffered IO we should first signal the caller that we may need to block by returning -EAGAIN instead. This behaviour can also result in short reads being returned to user space, which although it's not incorrect and user space should be able to deal with partial reads, it's somewhat surprising and even some popular applications like QEMU (Link tag #1) and MariaDB (Link tag #2) don't deal with short reads properly (or at all). The short read case happens when we try to read from a range that has a non-compressed and non-inline extent followed by a compressed extent. After having read the first extent, when we find the compressed extent we return -ENOTBLK from btrfs_dio_iomap_begin(), which results in iomap to treat the request as a short read, returning 0 (success) and waiting for previously submitted bios to complete (this happens at fs/iomap/direct-io.c:__iomap_dio_rw()). After that, and while at btrfs_file_read_iter(), we call filemap_read() to use buffered IO to read the remaining data, and pass it the number of bytes we were able to read with direct IO. Than at filemap_read() if we get a page fault error when accessing the read buffer, we return a partial read instead of an -EFAULT error, because the number of bytes previously read is greater than zero. So fix this by returning -EAGAIN for NOWAIT direct IO when we find a compressed or an inline extent. Reported-by: Dominique MARTINET <dominique.martinet@atmark-techno.com> Link: https://lore.kernel.org/linux-btrfs/YrrFGO4A1jS0GI0G@atmark-techno.com/ Link: https://jira.mariadb.org/browse/MDEV-27900?focusedCommentId=216582&page=com.atlassian.jira.plugin.system.issuetabpanels%3Acomment-tabpanel#comment-216582 Tested-by: Dominique MARTINET <dominique.martinet@atmark-techno.com> CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
pchaigno
pushed a commit
that referenced
this pull request
Jul 25, 2022
…ernel/git/at91/linux into arm/fixes AT91 fixes for 5.19 #2 It contains 2 DT fixes: - one for SAMA5D2 to fix the i2s1 assigned-clock-parents property - one for kswitch-d10 (LAN966 based) enforcing proper settings on GPIO pins * tag 'at91-fixes-5.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/at91/linux: ARM: dts: at91: sama5d2: Fix typo in i2s1 node ARM: dts: kswitch-d10: use open drain mode for coma-mode pins Link: https://lore.kernel.org/r/20220708151621.860339-1-claudiu.beznea@microchip.com Signed-off-by: Arnd Bergmann <arnd@arndb.de>
pchaigno
pushed a commit
that referenced
this pull request
Jul 25, 2022
into HEAD KVM/riscv fixes for 5.19, take #2 - Fix missing PAGE_PFN_MASK - Fix SRCU deadlock caused by kvm_riscv_check_vcpu_requests()
pchaigno
pushed a commit
that referenced
this pull request
Jul 25, 2022
On powerpc, 'perf trace' is crashing with a SIGSEGV when trying to process a perf.data file created with 'perf trace record -p': #0 0x00000001225b8988 in syscall_arg__scnprintf_augmented_string <snip> at builtin-trace.c:1492 #1 syscall_arg__scnprintf_filename <snip> at builtin-trace.c:1492 #2 syscall_arg__scnprintf_filename <snip> at builtin-trace.c:1486 #3 0x00000001225bdd9c in syscall_arg_fmt__scnprintf_val <snip> at builtin-trace.c:1973 #4 syscall__scnprintf_args <snip> at builtin-trace.c:2041 #5 0x00000001225bff04 in trace__sys_enter <snip> at builtin-trace.c:2319 That points to the below code in tools/perf/builtin-trace.c: /* * If this is raw_syscalls.sys_enter, then it always comes with the 6 possible * arguments, even if the syscall being handled, say "openat", uses only 4 arguments * this breaks syscall__augmented_args() check for augmented args, as we calculate * syscall->args_size using each syscalls:sys_enter_NAME tracefs format file, * so when handling, say the openat syscall, we end up getting 6 args for the * raw_syscalls:sys_enter event, when we expected just 4, we end up mistakenly * thinking that the extra 2 u64 args are the augmented filename, so just check * here and avoid using augmented syscalls when the evsel is the raw_syscalls one. */ if (evsel != trace->syscalls.events.sys_enter) augmented_args = syscall__augmented_args(sc, sample, &augmented_args_size, trace->raw_augmented_syscalls_args_size); As the comment points out, we should not be trying to augment the args for raw_syscalls. However, when processing a perf.data file, we are not initializing those properly. Fix the same. Reported-by: Claudio Carvalho <cclaudio@linux.ibm.com> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Link: http://lore.kernel.org/lkml/20220707090900.572584-1-naveen.n.rao@linux.vnet.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
pchaigno
pushed a commit
that referenced
this pull request
Jul 25, 2022
Add a lock_class_key per devlink instance to avoid DEADLOCK warning by lockdep, while locking more than one devlink instance in driver code, for example in opening VFs flow. Kernel log: [ 101.433802] ============================================ [ 101.433803] WARNING: possible recursive locking detected [ 101.433810] 5.19.0-rc1+ torvalds#35 Not tainted [ 101.433812] -------------------------------------------- [ 101.433813] bash/892 is trying to acquire lock: [ 101.433815] ffff888127bfc2f8 (&devlink->lock){+.+.}-{3:3}, at: probe_one+0x3c/0x690 [mlx5_core] [ 101.433909] but task is already holding lock: [ 101.433910] ffff888118f4c2f8 (&devlink->lock){+.+.}-{3:3}, at: mlx5_core_sriov_configure+0x62/0x280 [mlx5_core] [ 101.433989] other info that might help us debug this: [ 101.433990] Possible unsafe locking scenario: [ 101.433991] CPU0 [ 101.433991] ---- [ 101.433992] lock(&devlink->lock); [ 101.433993] lock(&devlink->lock); [ 101.433995] *** DEADLOCK *** [ 101.433996] May be due to missing lock nesting notation [ 101.433996] 6 locks held by bash/892: [ 101.433998] #0: ffff88810eb50448 (sb_writers#3){.+.+}-{0:0}, at: ksys_write+0xf3/0x1d0 [ 101.434009] #1: ffff888114777c88 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x20d/0x520 [ 101.434017] #2: ffff888102b58660 (kn->active#231){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x230/0x520 [ 101.434023] #3: ffff888102d70198 (&dev->mutex){....}-{3:3}, at: sriov_numvfs_store+0x132/0x310 [ 101.434031] #4: ffff888118f4c2f8 (&devlink->lock){+.+.}-{3:3}, at: mlx5_core_sriov_configure+0x62/0x280 [mlx5_core] [ 101.434108] #5: ffff88812adce198 (&dev->mutex){....}-{3:3}, at: __device_attach+0x76/0x430 [ 101.434116] stack backtrace: [ 101.434118] CPU: 5 PID: 892 Comm: bash Not tainted 5.19.0-rc1+ torvalds#35 [ 101.434120] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 101.434130] Call Trace: [ 101.434133] <TASK> [ 101.434135] dump_stack_lvl+0x57/0x7d [ 101.434145] __lock_acquire.cold+0x1df/0x3e7 [ 101.434151] ? register_lock_class+0x1880/0x1880 [ 101.434157] lock_acquire+0x1c1/0x550 [ 101.434160] ? probe_one+0x3c/0x690 [mlx5_core] [ 101.434229] ? lockdep_hardirqs_on_prepare+0x400/0x400 [ 101.434232] ? __xa_alloc+0x1ed/0x2d0 [ 101.434236] ? ksys_write+0xf3/0x1d0 [ 101.434239] __mutex_lock+0x12c/0x14b0 [ 101.434243] ? probe_one+0x3c/0x690 [mlx5_core] [ 101.434312] ? probe_one+0x3c/0x690 [mlx5_core] [ 101.434380] ? devlink_alloc_ns+0x11b/0x910 [ 101.434385] ? mutex_lock_io_nested+0x1320/0x1320 [ 101.434388] ? lockdep_init_map_type+0x21a/0x7d0 [ 101.434391] ? lockdep_init_map_type+0x21a/0x7d0 [ 101.434393] ? __init_swait_queue_head+0x70/0xd0 [ 101.434397] probe_one+0x3c/0x690 [mlx5_core] [ 101.434467] pci_device_probe+0x1b4/0x480 [ 101.434471] really_probe+0x1e0/0xaa0 [ 101.434474] __driver_probe_device+0x219/0x480 [ 101.434478] driver_probe_device+0x49/0x130 [ 101.434481] __device_attach_driver+0x1b8/0x280 [ 101.434484] ? driver_allows_async_probing+0x140/0x140 [ 101.434487] bus_for_each_drv+0x123/0x1a0 [ 101.434489] ? bus_for_each_dev+0x1a0/0x1a0 [ 101.434491] ? lockdep_hardirqs_on_prepare+0x286/0x400 [ 101.434494] ? trace_hardirqs_on+0x2d/0x100 [ 101.434498] __device_attach+0x1a3/0x430 [ 101.434501] ? device_driver_attach+0x1e0/0x1e0 [ 101.434503] ? pci_bridge_d3_possible+0x1e0/0x1e0 [ 101.434506] ? pci_create_resource_files+0xeb/0x190 [ 101.434511] pci_bus_add_device+0x6c/0xa0 [ 101.434514] pci_iov_add_virtfn+0x9e4/0xe00 [ 101.434517] ? trace_hardirqs_on+0x2d/0x100 [ 101.434521] sriov_enable+0x64a/0xca0 [ 101.434524] ? pcibios_sriov_disable+0x10/0x10 [ 101.434528] mlx5_core_sriov_configure+0xab/0x280 [mlx5_core] [ 101.434602] sriov_numvfs_store+0x20a/0x310 [ 101.434605] ? sriov_totalvfs_show+0xc0/0xc0 [ 101.434608] ? sysfs_file_ops+0x170/0x170 [ 101.434611] ? sysfs_file_ops+0x117/0x170 [ 101.434614] ? sysfs_file_ops+0x170/0x170 [ 101.434616] kernfs_fop_write_iter+0x348/0x520 [ 101.434619] new_sync_write+0x2e5/0x520 [ 101.434621] ? new_sync_read+0x520/0x520 [ 101.434624] ? lock_acquire+0x1c1/0x550 [ 101.434626] ? lockdep_hardirqs_on_prepare+0x400/0x400 [ 101.434630] vfs_write+0x5cb/0x8d0 [ 101.434633] ksys_write+0xf3/0x1d0 [ 101.434635] ? __x64_sys_read+0xb0/0xb0 [ 101.434638] ? lockdep_hardirqs_on_prepare+0x286/0x400 [ 101.434640] ? syscall_enter_from_user_mode+0x1d/0x50 [ 101.434643] do_syscall_64+0x3d/0x90 [ 101.434647] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 101.434650] RIP: 0033:0x7f5ff536b2f7 [ 101.434658] Code: 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74 24 [ 101.434661] RSP: 002b:00007ffd9ea85d58 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ 101.434664] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f5ff536b2f7 [ 101.434666] RDX: 0000000000000002 RSI: 000055c4c279e230 RDI: 0000000000000001 [ 101.434668] RBP: 000055c4c279e230 R08: 000000000000000a R09: 0000000000000001 [ 101.434669] R10: 000055c4c283cbf0 R11: 0000000000000246 R12: 0000000000000002 [ 101.434670] R13: 00007f5ff543d500 R14: 0000000000000002 R15: 00007f5ff543d700 [ 101.434673] </TASK> Signed-off-by: Moshe Shemesh <moshe@nvidia.com> Signed-off-by: Jiri Pirko <jiri@nvidia.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
aspsk
pushed a commit
that referenced
this pull request
Nov 30, 2022
Syzbot reported the following lockdep splat
======================================================
WARNING: possible circular locking dependency detected
6.0.0-rc7-syzkaller-18095-gbbed346d5a96 #0 Not tainted
------------------------------------------------------
syz-executor307/3029 is trying to acquire lock:
ffff0000c02525d8 (&mm->mmap_lock){++++}-{3:3}, at: __might_fault+0x54/0xb4 mm/memory.c:5576
but task is already holding lock:
ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline]
ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline]
ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (btrfs-root-00){++++}-{3:3}:
down_read_nested+0x64/0x84 kernel/locking/rwsem.c:1624
__btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline]
btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline]
btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279
btrfs_search_slot_get_root+0x74/0x338 fs/btrfs/ctree.c:1637
btrfs_search_slot+0x1b0/0xfd8 fs/btrfs/ctree.c:1944
btrfs_update_root+0x6c/0x5a0 fs/btrfs/root-tree.c:132
commit_fs_roots+0x1f0/0x33c fs/btrfs/transaction.c:1459
btrfs_commit_transaction+0x89c/0x12d8 fs/btrfs/transaction.c:2343
flush_space+0x66c/0x738 fs/btrfs/space-info.c:786
btrfs_async_reclaim_metadata_space+0x43c/0x4e0 fs/btrfs/space-info.c:1059
process_one_work+0x2d8/0x504 kernel/workqueue.c:2289
worker_thread+0x340/0x610 kernel/workqueue.c:2436
kthread+0x12c/0x158 kernel/kthread.c:376
ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860
-> #2 (&fs_info->reloc_mutex){+.+.}-{3:3}:
__mutex_lock_common+0xd4/0xca8 kernel/locking/mutex.c:603
__mutex_lock kernel/locking/mutex.c:747 [inline]
mutex_lock_nested+0x38/0x44 kernel/locking/mutex.c:799
btrfs_record_root_in_trans fs/btrfs/transaction.c:516 [inline]
start_transaction+0x248/0x944 fs/btrfs/transaction.c:752
btrfs_start_transaction+0x34/0x44 fs/btrfs/transaction.c:781
btrfs_create_common+0xf0/0x1b4 fs/btrfs/inode.c:6651
btrfs_create+0x8c/0xb0 fs/btrfs/inode.c:6697
lookup_open fs/namei.c:3413 [inline]
open_last_lookups fs/namei.c:3481 [inline]
path_openat+0x804/0x11c4 fs/namei.c:3688
do_filp_open+0xdc/0x1b8 fs/namei.c:3718
do_sys_openat2+0xb8/0x22c fs/open.c:1313
do_sys_open fs/open.c:1329 [inline]
__do_sys_openat fs/open.c:1345 [inline]
__se_sys_openat fs/open.c:1340 [inline]
__arm64_sys_openat+0xb0/0xe0 fs/open.c:1340
__invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581
-> #1 (sb_internal#2){.+.+}-{0:0}:
percpu_down_read include/linux/percpu-rwsem.h:51 [inline]
__sb_start_write include/linux/fs.h:1826 [inline]
sb_start_intwrite include/linux/fs.h:1948 [inline]
start_transaction+0x360/0x944 fs/btrfs/transaction.c:683
btrfs_join_transaction+0x30/0x40 fs/btrfs/transaction.c:795
btrfs_dirty_inode+0x50/0x140 fs/btrfs/inode.c:6103
btrfs_update_time+0x1c0/0x1e8 fs/btrfs/inode.c:6145
inode_update_time fs/inode.c:1872 [inline]
touch_atime+0x1f0/0x4a8 fs/inode.c:1945
file_accessed include/linux/fs.h:2516 [inline]
btrfs_file_mmap+0x50/0x88 fs/btrfs/file.c:2407
call_mmap include/linux/fs.h:2192 [inline]
mmap_region+0x7fc/0xc14 mm/mmap.c:1752
do_mmap+0x644/0x97c mm/mmap.c:1540
vm_mmap_pgoff+0xe8/0x1d0 mm/util.c:552
ksys_mmap_pgoff+0x1cc/0x278 mm/mmap.c:1586
__do_sys_mmap arch/arm64/kernel/sys.c:28 [inline]
__se_sys_mmap arch/arm64/kernel/sys.c:21 [inline]
__arm64_sys_mmap+0x58/0x6c arch/arm64/kernel/sys.c:21
__invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581
-> #0 (&mm->mmap_lock){++++}-{3:3}:
check_prev_add kernel/locking/lockdep.c:3095 [inline]
check_prevs_add kernel/locking/lockdep.c:3214 [inline]
validate_chain kernel/locking/lockdep.c:3829 [inline]
__lock_acquire+0x1530/0x30a4 kernel/locking/lockdep.c:5053
lock_acquire+0x100/0x1f8 kernel/locking/lockdep.c:5666
__might_fault+0x7c/0xb4 mm/memory.c:5577
_copy_to_user include/linux/uaccess.h:134 [inline]
copy_to_user include/linux/uaccess.h:160 [inline]
btrfs_ioctl_get_subvol_rootref+0x3a8/0x4bc fs/btrfs/ioctl.c:3203
btrfs_ioctl+0xa08/0xa64 fs/btrfs/ioctl.c:5556
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__arm64_sys_ioctl+0xd0/0x140 fs/ioctl.c:856
__invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581
other info that might help us debug this:
Chain exists of:
&mm->mmap_lock --> &fs_info->reloc_mutex --> btrfs-root-00
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(btrfs-root-00);
lock(&fs_info->reloc_mutex);
lock(btrfs-root-00);
lock(&mm->mmap_lock);
*** DEADLOCK ***
1 lock held by syz-executor307/3029:
#0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline]
#0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline]
#0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279
stack backtrace:
CPU: 0 PID: 3029 Comm: syz-executor307 Not tainted 6.0.0-rc7-syzkaller-18095-gbbed346d5a96 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/30/2022
Call trace:
dump_backtrace+0x1c4/0x1f0 arch/arm64/kernel/stacktrace.c:156
show_stack+0x2c/0x54 arch/arm64/kernel/stacktrace.c:163
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x104/0x16c lib/dump_stack.c:106
dump_stack+0x1c/0x58 lib/dump_stack.c:113
print_circular_bug+0x2c4/0x2c8 kernel/locking/lockdep.c:2053
check_noncircular+0x14c/0x154 kernel/locking/lockdep.c:2175
check_prev_add kernel/locking/lockdep.c:3095 [inline]
check_prevs_add kernel/locking/lockdep.c:3214 [inline]
validate_chain kernel/locking/lockdep.c:3829 [inline]
__lock_acquire+0x1530/0x30a4 kernel/locking/lockdep.c:5053
lock_acquire+0x100/0x1f8 kernel/locking/lockdep.c:5666
__might_fault+0x7c/0xb4 mm/memory.c:5577
_copy_to_user include/linux/uaccess.h:134 [inline]
copy_to_user include/linux/uaccess.h:160 [inline]
btrfs_ioctl_get_subvol_rootref+0x3a8/0x4bc fs/btrfs/ioctl.c:3203
btrfs_ioctl+0xa08/0xa64 fs/btrfs/ioctl.c:5556
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__arm64_sys_ioctl+0xd0/0x140 fs/ioctl.c:856
__invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581
We do generally the right thing here, copying the references into a
temporary buffer, however we are still holding the path when we do
copy_to_user from the temporary buffer. Fix this by freeing the path
before we copy to user space.
Reported-by: syzbot+4ef9e52e464c6ff47d9d@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
aspsk
pushed a commit
that referenced
this pull request
Nov 30, 2022
netfslib has a number of places in which it performs iteration of an xarray
whilst being under the RCU read lock. It *should* call xas_retry() as the
first thing inside of the loop and do "continue" if it returns true in case
the xarray walker passed out a special value indicating that the walk needs
to be redone from the root[*].
Fix this by adding the missing retry checks.
[*] I wonder if this should be done inside xas_find(), xas_next_node() and
suchlike, but I'm told that's not an simple change to effect.
This can cause an oops like that below. Note the faulting address - this
is an internal value (|0x2) returned from xarray.
BUG: kernel NULL pointer dereference, address: 0000000000000402
...
RIP: 0010:netfs_rreq_unlock+0xef/0x380 [netfs]
...
Call Trace:
netfs_rreq_assess+0xa6/0x240 [netfs]
netfs_readpage+0x173/0x3b0 [netfs]
? init_wait_var_entry+0x50/0x50
filemap_read_page+0x33/0xf0
filemap_get_pages+0x2f2/0x3f0
filemap_read+0xaa/0x320
? do_filp_open+0xb2/0x150
? rmqueue+0x3be/0xe10
ceph_read_iter+0x1fe/0x680 [ceph]
? new_sync_read+0x115/0x1a0
new_sync_read+0x115/0x1a0
vfs_read+0xf3/0x180
ksys_read+0x5f/0xe0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Changes:
========
ver #2)
- Changed an unsigned int to a size_t to reduce the likelihood of an
overflow as per Willy's suggestion.
- Added an additional patch to fix the maths.
Fixes: 3d3c950 ("netfs: Provide readahead and readpage netfs helpers")
Reported-by: George Law <glaw@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Jingbo Xu <jefflexu@linux.alibaba.com>
cc: Matthew Wilcox <willy@infradead.org>
cc: linux-cachefs@redhat.com
cc: linux-fsdevel@vger.kernel.org
Link: https://lore.kernel.org/r/166749229733.107206.17482609105741691452.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/166757987929.950645.12595273010425381286.stgit@warthog.procyon.org.uk/ # v2
aspsk
pushed a commit
that referenced
this pull request
Nov 30, 2022
Recent commit aa626da ("iavf: Detach device during reset task") removed netif_tx_stop_all_queues() with an assumption that Tx queues are already stopped by netif_device_detach() in the beginning of reset task. This assumption is incorrect because during reset task a potential link event can start Tx queues again. Revert this change to fix this issue. Reproducer: 1. Run some Tx traffic (e.g. iperf3) over iavf interface 2. Switch MTU of this interface in a loop [root@host ~]# cat repro.sh IF=enp2s0f0v0 iperf3 -c 192.168.0.1 -t 600 --logfile /dev/null & sleep 2 while :; do for i in 1280 1500 2000 900 ; do ip link set $IF mtu $i sleep 2 done done [root@host ~]# ./repro.sh Result: [ 306.199917] iavf 0000:02:02.0 enp2s0f0v0: NIC Link is Up Speed is 40 Gbps Full Duplex [ 308.205944] iavf 0000:02:02.0 enp2s0f0v0: NIC Link is Up Speed is 40 Gbps Full Duplex [ 310.103223] BUG: kernel NULL pointer dereference, address: 0000000000000008 [ 310.110179] #PF: supervisor write access in kernel mode [ 310.115396] #PF: error_code(0x0002) - not-present page [ 310.120526] PGD 0 P4D 0 [ 310.123057] Oops: 0002 [#1] PREEMPT SMP NOPTI [ 310.127408] CPU: 24 PID: 183 Comm: kworker/u64:9 Kdump: loaded Not tainted 6.1.0-rc3+ #2 [ 310.135485] Hardware name: Abacus electric, s.r.o. - servis@abacus.cz Super Server/H12SSW-iN, BIOS 2.4 04/13/2022 [ 310.145728] Workqueue: iavf iavf_reset_task [iavf] [ 310.150520] RIP: 0010:iavf_xmit_frame_ring+0xd1/0xf70 [iavf] [ 310.156180] Code: d0 0f 86 da 00 00 00 83 e8 01 0f b7 fa 29 f8 01 c8 39 c6 0f 8f a0 08 00 00 48 8b 45 20 48 8d 14 92 bf 01 00 00 00 4c 8d 3c d0 <49> 89 5f 08 8b 43 70 66 41 89 7f 14 41 89 47 10 f6 83 82 00 00 00 [ 310.174918] RSP: 0018:ffffbb5f0082caa0 EFLAGS: 00010293 [ 310.180137] RAX: 0000000000000000 RBX: ffff92345471a6e8 RCX: 0000000000000200 [ 310.187259] RDX: 0000000000000000 RSI: 000000000000000d RDI: 0000000000000001 [ 310.194385] RBP: ffff92341d249000 R08: ffff92434987fcac R09: 0000000000000001 [ 310.201509] R10: 0000000011f683b9 R11: 0000000011f50641 R12: 0000000000000008 [ 310.208631] R13: ffff923447500000 R14: 0000000000000000 R15: 0000000000000000 [ 310.215756] FS: 0000000000000000(0000) GS:ffff92434ee00000(0000) knlGS:0000000000000000 [ 310.223835] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 310.229572] CR2: 0000000000000008 CR3: 0000000fbc210004 CR4: 0000000000770ee0 [ 310.236696] PKRU: 55555554 [ 310.239399] Call Trace: [ 310.241844] <IRQ> [ 310.243855] ? dst_alloc+0x5b/0xb0 [ 310.247260] dev_hard_start_xmit+0x9e/0x1f0 [ 310.251439] sch_direct_xmit+0xa0/0x370 [ 310.255276] __qdisc_run+0x13e/0x580 [ 310.258848] __dev_queue_xmit+0x431/0xd00 [ 310.262851] ? selinux_ip_postroute+0x147/0x3f0 [ 310.267377] ip_finish_output2+0x26c/0x540 Fixes: aa626da ("iavf: Detach device during reset task") Cc: Jacob Keller <jacob.e.keller@intel.com> Cc: Patryk Piotrowski <patryk.piotrowski@intel.com> Cc: SlawomirX Laba <slawomirx.laba@intel.com> Signed-off-by: Ivan Vecera <ivecera@redhat.com> Tested-by: Konrad Jankowski <konrad0.jankowski@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
aspsk
pushed a commit
that referenced
this pull request
Nov 30, 2022
After commit aa626da ("iavf: Detach device during reset task") the device is detached during reset task and re-attached at its end. The problem occurs when reset task fails because Tx queues are restarted during device re-attach and this leads later to a crash. To resolve this issue properly close the net device in cause of failure in reset task to avoid restarting of tx queues at the end. Also replace the hacky manipulation with IFF_UP flag by device close that clears properly both IFF_UP and __LINK_STATE_START flags. In these case iavf_close() does not do anything because the adapter state is already __IAVF_DOWN. Reproducer: 1) Run some Tx traffic (e.g. iperf3) over iavf interface 2) Set VF trusted / untrusted in loop [root@host ~]# cat repro.sh PF=enp65s0f0 IF=${PF}v0 ip link set up $IF ip addr add 192.168.0.2/24 dev $IF sleep 1 iperf3 -c 192.168.0.1 -t 600 --logfile /dev/null & sleep 2 while :; do ip link set $PF vf 0 trust on ip link set $PF vf 0 trust off done [root@host ~]# ./repro.sh Result: [ 2006.650969] iavf 0000:41:01.0: Failed to init adminq: -53 [ 2006.675662] ice 0000:41:00.0: VF 0 is now trusted [ 2006.689997] iavf 0000:41:01.0: Reset task did not complete, VF disabled [ 2006.696611] iavf 0000:41:01.0: failed to allocate resources during reinit [ 2006.703209] ice 0000:41:00.0: VF 0 is now untrusted [ 2006.737011] ice 0000:41:00.0: VF 0 is now trusted [ 2006.764536] ice 0000:41:00.0: VF 0 is now untrusted [ 2006.768919] BUG: kernel NULL pointer dereference, address: 0000000000000b4a [ 2006.776358] #PF: supervisor read access in kernel mode [ 2006.781488] #PF: error_code(0x0000) - not-present page [ 2006.786620] PGD 0 P4D 0 [ 2006.789152] Oops: 0000 [#1] PREEMPT SMP NOPTI [ 2006.792903] ice 0000:41:00.0: VF 0 is now trusted [ 2006.793501] CPU: 4 PID: 0 Comm: swapper/4 Kdump: loaded Not tainted 6.1.0-rc3+ #2 [ 2006.805668] Hardware name: Abacus electric, s.r.o. - servis@abacus.cz Super Server/H12SSW-iN, BIOS 2.4 04/13/2022 [ 2006.815915] RIP: 0010:iavf_xmit_frame_ring+0x96/0xf70 [iavf] [ 2006.821028] ice 0000:41:00.0: VF 0 is now untrusted [ 2006.821572] Code: 48 83 c1 04 48 c1 e1 04 48 01 f9 48 83 c0 10 6b 50 f8 55 c1 ea 14 45 8d 64 14 01 48 39 c8 75 eb 41 83 fc 07 0f 8f e9 08 00 00 <0f> b7 45 4a 0f b7 55 48 41 8d 74 24 05 31 c9 66 39 d0 0f 86 da 00 [ 2006.845181] RSP: 0018:ffffb253004bc9e8 EFLAGS: 00010293 [ 2006.850397] RAX: ffff9d154de45b00 RBX: ffff9d15497d52e8 RCX: ffff9d154de45b00 [ 2006.856327] ice 0000:41:00.0: VF 0 is now trusted [ 2006.857523] RDX: 0000000000000000 RSI: 00000000000005a8 RDI: ffff9d154de45ac0 [ 2006.857525] RBP: 0000000000000b00 R08: ffff9d159cb010ac R09: 0000000000000001 [ 2006.857526] R10: ffff9d154de45940 R11: 0000000000000000 R12: 0000000000000002 [ 2006.883600] R13: ffff9d1770838dc0 R14: 0000000000000000 R15: ffffffffc07b8380 [ 2006.885840] ice 0000:41:00.0: VF 0 is now untrusted [ 2006.890725] FS: 0000000000000000(0000) GS:ffff9d248e900000(0000) knlGS:0000000000000000 [ 2006.890727] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 2006.909419] CR2: 0000000000000b4a CR3: 0000000c39c10002 CR4: 0000000000770ee0 [ 2006.916543] PKRU: 55555554 [ 2006.918254] ice 0000:41:00.0: VF 0 is now trusted [ 2006.919248] Call Trace: [ 2006.919250] <IRQ> [ 2006.919252] dev_hard_start_xmit+0x9e/0x1f0 [ 2006.932587] sch_direct_xmit+0xa0/0x370 [ 2006.936424] __dev_queue_xmit+0x7af/0xd00 [ 2006.940429] ip_finish_output2+0x26c/0x540 [ 2006.944519] ip_output+0x71/0x110 [ 2006.947831] ? __ip_finish_output+0x2b0/0x2b0 [ 2006.952180] __ip_queue_xmit+0x16d/0x400 [ 2006.952721] ice 0000:41:00.0: VF 0 is now untrusted [ 2006.956098] __tcp_transmit_skb+0xa96/0xbf0 [ 2006.965148] __tcp_retransmit_skb+0x174/0x860 [ 2006.969499] ? cubictcp_cwnd_event+0x40/0x40 [ 2006.973769] tcp_retransmit_skb+0x14/0xb0 ... Fixes: aa626da ("iavf: Detach device during reset task") Cc: Jacob Keller <jacob.e.keller@intel.com> Cc: Patryk Piotrowski <patryk.piotrowski@intel.com> Cc: SlawomirX Laba <slawomirx.laba@intel.com> Signed-off-by: Ivan Vecera <ivecera@redhat.com> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Leon Romanovsky <leonro@nvidia.com> Tested-by: Konrad Jankowski <konrad0.jankowski@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
aspsk
pushed a commit
that referenced
this pull request
Nov 30, 2022
…kernel/git/at91/linux into arm/fixes AT91 fixes for 6.1 #2 It contains: - fix UDC on at91sam9g20ek boards by adding vbus pin * tag 'at91-fixes-6.1-2' of https://git.kernel.org/pub/scm/linux/kernel/git/at91/linux: ARM: dts: at91: sam9g20ek: enable udc vbus gpio pinctrl Link: https://lore.kernel.org/r/20221118131205.301662-1-claudiu.beznea@microchip.com Signed-off-by: Arnd Bergmann <arnd@arndb.de>
aspsk
pushed a commit
that referenced
this pull request
Nov 30, 2022
ldev->lock is used to serialize lag change operations. Since multiport eswtich functionality was added, we now change the mode dynamically. However, acquiring ldev->lock is not allowed as it could possibly lead to a deadlock as reported by the lockdep mechanism. [ 836.154963] WARNING: possible circular locking dependency detected [ 836.155850] 5.19.0-rc5_net_56b7df2 #1 Not tainted [ 836.156549] ------------------------------------------------------ [ 836.157418] handler1/12198 is trying to acquire lock: [ 836.158178] ffff888187d52b58 (&ldev->lock){+.+.}-{3:3}, at: mlx5_lag_do_mirred+0x3b/0x70 [mlx5_core] [ 836.159575] [ 836.159575] but task is already holding lock: [ 836.160474] ffff8881d4de2930 (&block->cb_lock){++++}-{3:3}, at: tc_setup_cb_add+0x5b/0x200 [ 836.161669] which lock already depends on the new lock. [ 836.162905] [ 836.162905] the existing dependency chain (in reverse order) is: [ 836.164008] -> #3 (&block->cb_lock){++++}-{3:3}: [ 836.164946] down_write+0x25/0x60 [ 836.165548] tcf_block_get_ext+0x1c6/0x5d0 [ 836.166253] ingress_init+0x74/0xa0 [sch_ingress] [ 836.167028] qdisc_create.constprop.0+0x130/0x5e0 [ 836.167805] tc_modify_qdisc+0x481/0x9f0 [ 836.168490] rtnetlink_rcv_msg+0x16e/0x5a0 [ 836.169189] netlink_rcv_skb+0x4e/0xf0 [ 836.169861] netlink_unicast+0x190/0x250 [ 836.170543] netlink_sendmsg+0x243/0x4b0 [ 836.171226] sock_sendmsg+0x33/0x40 [ 836.171860] ____sys_sendmsg+0x1d1/0x1f0 [ 836.172535] ___sys_sendmsg+0xab/0xf0 [ 836.173183] __sys_sendmsg+0x51/0x90 [ 836.173836] do_syscall_64+0x3d/0x90 [ 836.174471] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 836.175282] [ 836.175282] -> #2 (rtnl_mutex){+.+.}-{3:3}: [ 836.176190] __mutex_lock+0x6b/0xf80 [ 836.176830] register_netdevice_notifier+0x21/0x120 [ 836.177631] rtnetlink_init+0x2d/0x1e9 [ 836.178289] netlink_proto_init+0x163/0x179 [ 836.178994] do_one_initcall+0x63/0x300 [ 836.179672] kernel_init_freeable+0x2cb/0x31b [ 836.180403] kernel_init+0x17/0x140 [ 836.181035] ret_from_fork+0x1f/0x30 [ 836.181687] -> #1 (pernet_ops_rwsem){+.+.}-{3:3}: [ 836.182628] down_write+0x25/0x60 [ 836.183235] unregister_netdevice_notifier+0x1c/0xb0 [ 836.184029] mlx5_ib_roce_cleanup+0x94/0x120 [mlx5_ib] [ 836.184855] __mlx5_ib_remove+0x35/0x60 [mlx5_ib] [ 836.185637] mlx5_eswitch_unregister_vport_reps+0x22f/0x440 [mlx5_core] [ 836.186698] auxiliary_bus_remove+0x18/0x30 [ 836.187409] device_release_driver_internal+0x1f6/0x270 [ 836.188253] bus_remove_device+0xef/0x160 [ 836.188939] device_del+0x18b/0x3f0 [ 836.189562] mlx5_rescan_drivers_locked+0xd6/0x2d0 [mlx5_core] [ 836.190516] mlx5_lag_remove_devices+0x69/0xe0 [mlx5_core] [ 836.191414] mlx5_do_bond_work+0x441/0x620 [mlx5_core] [ 836.192278] process_one_work+0x25c/0x590 [ 836.192963] worker_thread+0x4f/0x3d0 [ 836.193609] kthread+0xcb/0xf0 [ 836.194189] ret_from_fork+0x1f/0x30 [ 836.194826] -> #0 (&ldev->lock){+.+.}-{3:3}: [ 836.195734] __lock_acquire+0x15b8/0x2a10 [ 836.196426] lock_acquire+0xce/0x2d0 [ 836.197057] __mutex_lock+0x6b/0xf80 [ 836.197708] mlx5_lag_do_mirred+0x3b/0x70 [mlx5_core] [ 836.198575] tc_act_parse_mirred+0x25b/0x800 [mlx5_core] [ 836.199467] parse_tc_actions+0x168/0x5a0 [mlx5_core] [ 836.200340] __mlx5e_add_fdb_flow+0x263/0x480 [mlx5_core] [ 836.201241] mlx5e_configure_flower+0x8a0/0x1820 [mlx5_core] [ 836.202187] tc_setup_cb_add+0xd7/0x200 [ 836.202856] fl_hw_replace_filter+0x14c/0x1f0 [cls_flower] [ 836.203739] fl_change+0xbbe/0x1730 [cls_flower] [ 836.204501] tc_new_tfilter+0x407/0xd90 [ 836.205168] rtnetlink_rcv_msg+0x406/0x5a0 [ 836.205877] netlink_rcv_skb+0x4e/0xf0 [ 836.206535] netlink_unicast+0x190/0x250 [ 836.207217] netlink_sendmsg+0x243/0x4b0 [ 836.207915] sock_sendmsg+0x33/0x40 [ 836.208538] ____sys_sendmsg+0x1d1/0x1f0 [ 836.209219] ___sys_sendmsg+0xab/0xf0 [ 836.209878] __sys_sendmsg+0x51/0x90 [ 836.210510] do_syscall_64+0x3d/0x90 [ 836.211137] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 836.211954] other info that might help us debug this: [ 836.213174] Chain exists of: [ 836.213174] &ldev->lock --> rtnl_mutex --> &block->cb_lock 836.214650] Possible unsafe locking scenario: [ 836.214650] [ 836.215574] CPU0 CPU1 [ 836.216255] ---- ---- [ 836.216943] lock(&block->cb_lock); [ 836.217518] lock(rtnl_mutex); [ 836.218348] lock(&block->cb_lock); [ 836.219212] lock(&ldev->lock); [ 836.219758] [ 836.219758] *** DEADLOCK *** [ 836.219758] [ 836.220747] 2 locks held by handler1/12198: [ 836.221390] #0: ffff8881d4de2930 (&block->cb_lock){++++}-{3:3}, at: tc_setup_cb_add+0x5b/0x200 [ 836.222646] #1: ffff88810c9a92c0 (&esw->mode_lock){++++}-{3:3}, at: mlx5_esw_hold+0x39/0x50 [mlx5_core] [ 836.224063] stack backtrace: [ 836.224799] CPU: 6 PID: 12198 Comm: handler1 Not tainted 5.19.0-rc5_net_56b7df2 #1 [ 836.225923] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 836.227476] Call Trace: [ 836.227929] <TASK> [ 836.228332] dump_stack_lvl+0x57/0x7d [ 836.228924] check_noncircular+0x104/0x120 [ 836.229562] __lock_acquire+0x15b8/0x2a10 [ 836.230201] lock_acquire+0xce/0x2d0 [ 836.230776] ? mlx5_lag_do_mirred+0x3b/0x70 [mlx5_core] [ 836.231614] ? find_held_lock+0x2b/0x80 [ 836.232221] __mutex_lock+0x6b/0xf80 [ 836.232799] ? mlx5_lag_do_mirred+0x3b/0x70 [mlx5_core] [ 836.233636] ? mlx5_lag_do_mirred+0x3b/0x70 [mlx5_core] [ 836.234451] ? xa_load+0xc3/0x190 [ 836.234995] mlx5_lag_do_mirred+0x3b/0x70 [mlx5_core] [ 836.235803] tc_act_parse_mirred+0x25b/0x800 [mlx5_core] [ 836.236636] ? tc_act_can_offload_mirred+0x135/0x210 [mlx5_core] [ 836.237550] parse_tc_actions+0x168/0x5a0 [mlx5_core] [ 836.238364] __mlx5e_add_fdb_flow+0x263/0x480 [mlx5_core] [ 836.239202] mlx5e_configure_flower+0x8a0/0x1820 [mlx5_core] [ 836.240076] ? lock_acquire+0xce/0x2d0 [ 836.240668] ? tc_setup_cb_add+0x5b/0x200 [ 836.241294] tc_setup_cb_add+0xd7/0x200 [ 836.241917] fl_hw_replace_filter+0x14c/0x1f0 [cls_flower] [ 836.242709] fl_change+0xbbe/0x1730 [cls_flower] [ 836.243408] tc_new_tfilter+0x407/0xd90 [ 836.244043] ? tc_del_tfilter+0x880/0x880 [ 836.244672] rtnetlink_rcv_msg+0x406/0x5a0 [ 836.245310] ? netlink_deliver_tap+0x7a/0x4b0 [ 836.245991] ? if_nlmsg_stats_size+0x2b0/0x2b0 [ 836.246675] netlink_rcv_skb+0x4e/0xf0 [ 836.258046] netlink_unicast+0x190/0x250 [ 836.258669] netlink_sendmsg+0x243/0x4b0 [ 836.259288] sock_sendmsg+0x33/0x40 [ 836.259857] ____sys_sendmsg+0x1d1/0x1f0 [ 836.260473] ___sys_sendmsg+0xab/0xf0 [ 836.261064] ? lock_acquire+0xce/0x2d0 [ 836.261669] ? find_held_lock+0x2b/0x80 [ 836.262272] ? __fget_files+0xb9/0x190 [ 836.262871] ? __fget_files+0xd3/0x190 [ 836.263462] __sys_sendmsg+0x51/0x90 [ 836.264064] do_syscall_64+0x3d/0x90 [ 836.264652] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 836.265425] RIP: 0033:0x7fdbe5e2677d [ 836.266012] Code: 28 89 54 24 1c 48 89 74 24 10 89 7c 24 08 e8 ba ee ff ff 8b 54 24 1c 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 33 44 89 c7 48 89 44 24 08 e8 ee ee ff ff 48 [ 836.268485] RSP: 002b:00007fdbe48a75a0 EFLAGS: 00000293 ORIG_RAX: 000000000000002e [ 836.269598] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007fdbe5e2677d [ 836.270576] RDX: 0000000000000000 RSI: 00007fdbe48a7640 RDI: 000000000000003c [ 836.271565] RBP: 00007fdbe48a8368 R08: 0000000000000000 R09: 0000000000000000 [ 836.272546] R10: 00007fdbe48a84b0 R11: 0000000000000293 R12: 0000557bd17dc860 [ 836.273527] R13: 0000000000000000 R14: 0000557bd17dc860 R15: 00007fdbe48a7640 [ 836.274521] </TASK> To avoid using mode holding ldev->lock in the configure flow, we queue a work to the lag workqueue and cease wait on a completion object. In addition, we remove the lock from mlx5_lag_do_mirred() since it is not really protecting anything. It should be noted that an actual deadlock has not been observed. Signed-off-by: Eli Cohen <elic@nvidia.com> Reviewed-by: Mark Bloch <mbloch@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com>
aspsk
pushed a commit
that referenced
this pull request
Nov 30, 2022
When logging an inode in full mode, or when logging xattrs or when logging
the dir index items of a directory, we are modifying the log tree while
holding a read lock on a leaf from the fs/subvolume tree. This can lead to
a deadlock in rare circumstances, but it is a real possibility, and it was
recently reported by syzbot with the following trace from lockdep:
WARNING: possible circular locking dependency detected
6.1.0-rc5-next-20221116-syzkaller #0 Not tainted
------------------------------------------------------
syz-executor.1/16154 is trying to acquire lock:
ffff88807e3084a0 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0xa1/0xf30 fs/btrfs/delayed-inode.c:256
but task is already holding lock:
ffff88807df33078 (btrfs-log-00){++++}-{3:3}, at: __btrfs_tree_lock+0x32/0x3d0 fs/btrfs/locking.c:197
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (btrfs-log-00){++++}-{3:3}:
down_read_nested+0x9e/0x450 kernel/locking/rwsem.c:1634
__btrfs_tree_read_lock+0x32/0x350 fs/btrfs/locking.c:135
btrfs_tree_read_lock fs/btrfs/locking.c:141 [inline]
btrfs_read_lock_root_node+0x82/0x3a0 fs/btrfs/locking.c:280
btrfs_search_slot_get_root fs/btrfs/ctree.c:1678 [inline]
btrfs_search_slot+0x3ca/0x2c70 fs/btrfs/ctree.c:1998
btrfs_lookup_csum+0x116/0x3f0 fs/btrfs/file-item.c:209
btrfs_csum_file_blocks+0x40e/0x1370 fs/btrfs/file-item.c:1021
log_csums.isra.0+0x244/0x2d0 fs/btrfs/tree-log.c:4258
copy_items.isra.0+0xbfb/0xed0 fs/btrfs/tree-log.c:4403
copy_inode_items_to_log+0x13d6/0x1d90 fs/btrfs/tree-log.c:5873
btrfs_log_inode+0xb19/0x4680 fs/btrfs/tree-log.c:6495
btrfs_log_inode_parent+0x890/0x2a20 fs/btrfs/tree-log.c:6982
btrfs_log_dentry_safe+0x59/0x80 fs/btrfs/tree-log.c:7083
btrfs_sync_file+0xa41/0x13c0 fs/btrfs/file.c:1921
vfs_fsync_range+0x13e/0x230 fs/sync.c:188
generic_write_sync include/linux/fs.h:2856 [inline]
iomap_dio_complete+0x73a/0x920 fs/iomap/direct-io.c:128
btrfs_direct_write fs/btrfs/file.c:1536 [inline]
btrfs_do_write_iter+0xba2/0x1470 fs/btrfs/file.c:1668
call_write_iter include/linux/fs.h:2160 [inline]
do_iter_readv_writev+0x20b/0x3b0 fs/read_write.c:735
do_iter_write+0x182/0x700 fs/read_write.c:861
vfs_iter_write+0x74/0xa0 fs/read_write.c:902
iter_file_splice_write+0x745/0xc90 fs/splice.c:686
do_splice_from fs/splice.c:764 [inline]
direct_splice_actor+0x114/0x180 fs/splice.c:931
splice_direct_to_actor+0x335/0x8a0 fs/splice.c:886
do_splice_direct+0x1ab/0x280 fs/splice.c:974
do_sendfile+0xb19/0x1270 fs/read_write.c:1255
__do_sys_sendfile64 fs/read_write.c:1323 [inline]
__se_sys_sendfile64 fs/read_write.c:1309 [inline]
__x64_sys_sendfile64+0x259/0x2c0 fs/read_write.c:1309
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
-> #1 (btrfs-tree-00){++++}-{3:3}:
__lock_release kernel/locking/lockdep.c:5382 [inline]
lock_release+0x371/0x810 kernel/locking/lockdep.c:5688
up_write+0x2a/0x520 kernel/locking/rwsem.c:1614
btrfs_tree_unlock_rw fs/btrfs/locking.h:189 [inline]
btrfs_unlock_up_safe+0x1e3/0x290 fs/btrfs/locking.c:238
search_leaf fs/btrfs/ctree.c:1832 [inline]
btrfs_search_slot+0x265e/0x2c70 fs/btrfs/ctree.c:2074
btrfs_insert_empty_items+0xbd/0x1c0 fs/btrfs/ctree.c:4133
btrfs_insert_delayed_item+0x826/0xfa0 fs/btrfs/delayed-inode.c:746
btrfs_insert_delayed_items fs/btrfs/delayed-inode.c:824 [inline]
__btrfs_commit_inode_delayed_items fs/btrfs/delayed-inode.c:1111 [inline]
__btrfs_run_delayed_items+0x280/0x590 fs/btrfs/delayed-inode.c:1153
flush_space+0x147/0xe90 fs/btrfs/space-info.c:728
btrfs_async_reclaim_metadata_space+0x541/0xc10 fs/btrfs/space-info.c:1086
process_one_work+0x9bf/0x1710 kernel/workqueue.c:2289
worker_thread+0x669/0x1090 kernel/workqueue.c:2436
kthread+0x2e8/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308
-> #0 (&delayed_node->mutex){+.+.}-{3:3}:
check_prev_add kernel/locking/lockdep.c:3097 [inline]
check_prevs_add kernel/locking/lockdep.c:3216 [inline]
validate_chain kernel/locking/lockdep.c:3831 [inline]
__lock_acquire+0x2a43/0x56d0 kernel/locking/lockdep.c:5055
lock_acquire kernel/locking/lockdep.c:5668 [inline]
lock_acquire+0x1e3/0x630 kernel/locking/lockdep.c:5633
__mutex_lock_common kernel/locking/mutex.c:603 [inline]
__mutex_lock+0x12f/0x1360 kernel/locking/mutex.c:747
__btrfs_release_delayed_node.part.0+0xa1/0xf30 fs/btrfs/delayed-inode.c:256
__btrfs_release_delayed_node fs/btrfs/delayed-inode.c:251 [inline]
btrfs_release_delayed_node fs/btrfs/delayed-inode.c:281 [inline]
btrfs_remove_delayed_node+0x52/0x60 fs/btrfs/delayed-inode.c:1285
btrfs_evict_inode+0x511/0xf30 fs/btrfs/inode.c:5554
evict+0x2ed/0x6b0 fs/inode.c:664
dispose_list+0x117/0x1e0 fs/inode.c:697
prune_icache_sb+0xeb/0x150 fs/inode.c:896
super_cache_scan+0x391/0x590 fs/super.c:106
do_shrink_slab+0x464/0xce0 mm/vmscan.c:843
shrink_slab_memcg mm/vmscan.c:912 [inline]
shrink_slab+0x388/0x660 mm/vmscan.c:991
shrink_node_memcgs mm/vmscan.c:6088 [inline]
shrink_node+0x93d/0x1f30 mm/vmscan.c:6117
shrink_zones mm/vmscan.c:6355 [inline]
do_try_to_free_pages+0x3b4/0x17a0 mm/vmscan.c:6417
try_to_free_mem_cgroup_pages+0x3a4/0xa70 mm/vmscan.c:6732
reclaim_high.constprop.0+0x182/0x230 mm/memcontrol.c:2393
mem_cgroup_handle_over_high+0x190/0x520 mm/memcontrol.c:2578
try_charge_memcg+0xe0c/0x12f0 mm/memcontrol.c:2816
try_charge mm/memcontrol.c:2827 [inline]
charge_memcg+0x90/0x3b0 mm/memcontrol.c:6889
__mem_cgroup_charge+0x2b/0x90 mm/memcontrol.c:6910
mem_cgroup_charge include/linux/memcontrol.h:667 [inline]
__filemap_add_folio+0x615/0xf80 mm/filemap.c:852
filemap_add_folio+0xaf/0x1e0 mm/filemap.c:934
__filemap_get_folio+0x389/0xd80 mm/filemap.c:1976
pagecache_get_page+0x2e/0x280 mm/folio-compat.c:104
find_or_create_page include/linux/pagemap.h:612 [inline]
alloc_extent_buffer+0x2b9/0x1580 fs/btrfs/extent_io.c:4588
btrfs_init_new_buffer fs/btrfs/extent-tree.c:4869 [inline]
btrfs_alloc_tree_block+0x2e1/0x1320 fs/btrfs/extent-tree.c:4988
__btrfs_cow_block+0x3b2/0x1420 fs/btrfs/ctree.c:440
btrfs_cow_block+0x2fa/0x950 fs/btrfs/ctree.c:595
btrfs_search_slot+0x11b0/0x2c70 fs/btrfs/ctree.c:2038
btrfs_update_root+0xdb/0x630 fs/btrfs/root-tree.c:137
update_log_root fs/btrfs/tree-log.c:2841 [inline]
btrfs_sync_log+0xbfb/0x2870 fs/btrfs/tree-log.c:3064
btrfs_sync_file+0xdb9/0x13c0 fs/btrfs/file.c:1947
vfs_fsync_range+0x13e/0x230 fs/sync.c:188
generic_write_sync include/linux/fs.h:2856 [inline]
iomap_dio_complete+0x73a/0x920 fs/iomap/direct-io.c:128
btrfs_direct_write fs/btrfs/file.c:1536 [inline]
btrfs_do_write_iter+0xba2/0x1470 fs/btrfs/file.c:1668
call_write_iter include/linux/fs.h:2160 [inline]
do_iter_readv_writev+0x20b/0x3b0 fs/read_write.c:735
do_iter_write+0x182/0x700 fs/read_write.c:861
vfs_iter_write+0x74/0xa0 fs/read_write.c:902
iter_file_splice_write+0x745/0xc90 fs/splice.c:686
do_splice_from fs/splice.c:764 [inline]
direct_splice_actor+0x114/0x180 fs/splice.c:931
splice_direct_to_actor+0x335/0x8a0 fs/splice.c:886
do_splice_direct+0x1ab/0x280 fs/splice.c:974
do_sendfile+0xb19/0x1270 fs/read_write.c:1255
__do_sys_sendfile64 fs/read_write.c:1323 [inline]
__se_sys_sendfile64 fs/read_write.c:1309 [inline]
__x64_sys_sendfile64+0x259/0x2c0 fs/read_write.c:1309
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
other info that might help us debug this:
Chain exists of:
&delayed_node->mutex --> btrfs-tree-00 --> btrfs-log-00
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(btrfs-log-00);
lock(btrfs-tree-00);
lock(btrfs-log-00);
lock(&delayed_node->mutex);
Holding a read lock on a leaf from a fs/subvolume tree creates a nasty
lock dependency when we are COWing extent buffers for the log tree and we
have two tasks modifying the log tree, with each one in one of the
following 2 scenarios:
1) Modifying the log tree triggers an extent buffer allocation while
holding a write lock on a parent extent buffer from the log tree.
Allocating the pages for an extent buffer, or the extent buffer
struct, can trigger inode eviction and finally the inode eviction
will trigger a release/remove of a delayed node, which requires
taking the delayed node's mutex;
2) Allocating a metadata extent for a log tree can trigger the async
reclaim thread and make us wait for it to release enough space and
unblock our reservation ticket. The reclaim thread can start flushing
delayed items, and that in turn results in the need to lock delayed
node mutexes and in the need to write lock extent buffers of a
subvolume tree - all this while holding a write lock on the parent
extent buffer in the log tree.
So one task in scenario 1) running in parallel with another task in
scenario 2) could lead to a deadlock, one wanting to lock a delayed node
mutex while having a read lock on a leaf from the subvolume, while the
other is holding the delayed node's mutex and wants to write lock the same
subvolume leaf for flushing delayed items.
Fix this by cloning the leaf of the fs/subvolume tree, release/unlock the
fs/subvolume leaf and use the clone leaf instead.
Reported-by: syzbot+9b7c21f486f5e7f8d029@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/000000000000ccc93c05edc4d8cf@google.com/
CC: stable@vger.kernel.org # 6.0+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
borkmann
pushed a commit
that referenced
this pull request
Oct 20, 2025
Since blamed commit, unregister_netdevice_many_notify() takes the netdev
mutex if the device needs it.
If the device list is too long, this will lock more device mutexes than
lockdep can handle:
unshare -n \
bash -c 'for i in $(seq 1 100);do ip link add foo$i type dummy;done'
BUG: MAX_LOCK_DEPTH too low!
turning off the locking correctness validator.
depth: 48 max: 48!
48 locks held by kworker/u16:1/69:
#0: ..148 ((wq_completion)netns){+.+.}-{0:0}, at: process_one_work
#1: ..d40 (net_cleanup_work){+.+.}-{0:0}, at: process_one_work
#2: ..bd0 (pernet_ops_rwsem){++++}-{4:4}, at: cleanup_net
#3: ..aa8 (rtnl_mutex){+.+.}-{4:4}, at: default_device_exit_batch
#4: ..cb0 (&dev_instance_lock_key#3){+.+.}-{4:4}, at: unregister_netdevice_many_notify
[..]
Add a helper to close and then unlock a list of net_devices.
Devices that are not up have to be skipped - netif_close_many always
removes them from the list without any other actions taken, so they'd
remain in locked state.
Close devices whenever we've used up half of the tracking slots or we
processed entire list without hitting the limit.
Fixes: 7e4d784 ("net: hold netdev instance lock during rtnetlink operations")
Signed-off-by: Florian Westphal <fw@strlen.de>
Link: https://patch.msgid.link/20251013185052.14021-1-fw@strlen.de
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
borkmann
pushed a commit
that referenced
this pull request
Oct 24, 2025
Expand the prefault memory selftest to add a regression test for a KVM bug where KVM's retry logic would result in (breakable) deadlock due to the memslot deletion waiting on prefaulting to release SRCU, and prefaulting waiting on the memslot to fully disappear (KVM uses a two-step process to delete memslots, and KVM x86 retries page faults if a to-be-deleted, a.k.a. INVALID, memslot is encountered). To exercise concurrent memslot remove, spawn a second thread to initiate memslot removal at roughly the same time as prefaulting. Test memslot removal for all testcases, i.e. don't limit concurrent removal to only the success case. There are essentially three prefault scenarios (so far) that are of interest: 1. Success 2. ENOENT due to no memslot 3. EAGAIN due to INVALID memslot For all intents and purposes, #1 and #2 are mutually exclusive, or rather, easier to test via separate testcases since writing to non-existent memory is trivial. But for #3, making it mutually exclusive with #1 _or_ #2 is actually more complex than testing memslot removal for all scenarios. The only requirement to let memslot removal coexist with other scenarios is a way to guarantee a stable result, e.g. that the "no memslot" test observes ENOENT, not EAGAIN, for the final checks. So, rather than make memslot removal mutually exclusive with the ENOENT scenario, simply restore the memslot and retry prefaulting. For the "no memslot" case, KVM_PRE_FAULT_MEMORY should be idempotent, i.e. should always fail with ENOENT regardless of how many times userspace attempts prefaulting. Pass in both the base GPA and the offset (instead of the "full" GPA) so that the worker can recreate the memslot. Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Co-developed-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20250924174255.2141847-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
borkmann
pushed a commit
that referenced
this pull request
Oct 31, 2025
Ido Schimmel says:
====================
icmp: Add RFC 5837 support
tl;dr
=====
This patchset extends certain ICMP error messages (e.g., "Time
Exceeded") with incoming interface information in accordance with RFC
5837 [1]. This is required for more meaningful traceroute results in
unnumbered networks. Like other ICMP settings, the feature is controlled
via a per-{netns, address family} sysctl. The interface and the
implementation are designed to support more ICMP extensions.
Motivation
==========
Over the years, the kernel was extended with the ability to derive the
source IP of ICMP error messages from the interface that received the
datagram which elicited the ICMP error [2][3][4]. This is especially
important for "Time Exceeded" messages as it allows traceroute users to
trace the actual packet path along the network.
The above scheme does not work in unnumbered networks. In these
networks, only the loopback / VRF interface is assigned a global IP
address while router interfaces are assigned IPv6 link-local addresses.
As such, ICMP error messages are generated with a source IP derived from
the loopback / VRF interface, making it impossible to trace the actual
packet path when parallel links exist between routers.
The problem can be solved by implementing the solution proposed by RFC
4884 [5] and RFC 5837. The former defines an ICMP extension structure
that can be appended to selected ICMP messages and carry extension
objects. The latter defines an extension object called the "Interface
Information Object" (IIO) that can carry interface information (e.g.,
name, index, MTU) about interfaces with certain roles such as the
interface that received the datagram which elicited the ICMP error.
The payload of the datagram that elicited the error (potentially padded
/ trimmed) along with the ICMP extension structure will be queued to the
error queue of the originating socket, thereby allowing traceroute
applications to parse and display the information encoded in the ICMP
extension structure. Example:
# traceroute6 -e 2001:db8:1::3
traceroute to 2001:db8:1::3 (2001:db8:1::3), 30 hops max, 80 byte packets
1 2001:db8:1::2 (2001:db8:1::2) <INC:11,"eth1",mtu=1500> 0.214 ms 0.171 ms 0.162 ms
2 2001:db8:1::3 (2001:db8:1::3) <INC:12,"eth2",mtu=1500> 0.154 ms 0.135 ms 0.127 ms
# traceroute -e 192.0.2.3
traceroute to 192.0.2.3 (192.0.2.3), 30 hops max, 60 byte packets
1 192.0.2.2 (192.0.2.2) <INC:11,"eth1",mtu=1500> 0.191 ms 0.148 ms 0.144 ms
2 192.0.2.3 (192.0.2.3) <INC:12,"eth2",mtu=1500> 0.137 ms 0.122 ms 0.114 ms
Implementation
==============
As previously stated, the feature is controlled via a per-{netns,
address} sysctl. Specifically, a bit mask where each bit controls the
addition of a different ICMP extension to ICMP error messages.
Currently, only a single value is supported, to append the incoming
interface information.
Key points:
1. Global knob vs finer control. I am not aware of users who require
finer control, but it is possible that some users will want to avoid
appending ICMP extensions when the packet is sent out of a specific
interface (e.g., the management interface) or to a specific subnet. This
can be accomplished via a tc-bpf program that trims the ICMP extension
structure. An example program can be found here [6].
2. Split implementation between IPv4 / IPv6. While the implementation is
currently similar, there are some differences between both address
families. In addition, some extensions (e.g., RFC 8883 [7]) are
IPv6-specific. Given the above and given that the implementation is not
very complex, it makes sense to keep both implementations separate.
3. Compatibility with legacy applications. RFC 4884 from 2007 extended
certain ICMP messages with a length field that encodes the length of the
"original datagram" field, so that applications will be able to tell
where the "original datagram" ends and where the ICMP extension
structure starts.
Before the introduction of the IP{,6}_RECVERR_RFC4884 socket options
[8][9] in 2020 it was impossible for applications to know where the ICMP
extension structure starts and to this day some applications assume that
it starts at offset 128, which is the minimum length of the "original
datagram" field as specified by RFC 4884.
Therefore, in order to be compatible with both legacy and modern
applications, the datagram that elicited the ICMP error is trimmed /
padded to 128 bytes before appending the ICMP extension structure.
This behavior is specifically called out by RFC 4884: "Those wishing to
be backward compatible with non-compliant TRACEROUTE implementations
will include exactly 128 octets" [10].
Note that in 128 bytes we should be able to include enough headers for
the originating node to match the ICMP error message with the relevant
socket. For example, the following headers will be present in the
"original datagram" field when a VXLAN encapsulated IPv6 packet elicits
an ICMP error in an IPv6 underlay: IPv6 (40) | UDP (8) | VXLAN (8) | Eth
(14) | IPv6 (40) | UDP (8). Overall, 118 bytes.
If the 128 bytes limit proves to be insufficient for some use case, we
can consider dedicating a new bit in the previously mentioned sysctl to
allow for more bytes to be included in the "original datagram" field.
4. Extensibility. This patchset adds partial support for a single ICMP
extension. However, the interface and the implementation should be able
to support more extensions, if needed. Examples:
* More interface information objects as part of RFC 5837. We should be
able to derive the outgoing interface information and nexthop IP from
the dst entry attached to the packet that elicited the error.
* Node identification object (e.g., hostname / loopback IP) [11].
* Extended Information object which encodes aggregate header limits as
part of RFC 8883.
A previous proposal from Ishaan Gandhi and Ron Bonica is available here
[12].
Testing
=======
The existing traceroute selftest is extended to test that ICMP
extensions are reported correctly when enabled. Both address families
are tested and with different packet sizes in order to make sure that
trimming / padding works correctly. Tested that packets are parsed
correctly by the IP{,6}_RECVERR_RFC4884 socket options using Willem's
selftest [13].
Changelog
=========
Changes since v1 [14]:
* Patches #1-#2: Added a comment about field ordering and review tags.
* Patch #3: Converted "sysctl" to "echo" when testing the return value.
Added a check to skip the test if traceroute version is older
than 2.1.5.
[1] https://datatracker.ietf.org/doc/html/rfc5837
[2] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1c2fb7f93cb20621772bf304f3dba0849942e5db
[3] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fac6fce9bdb59837bb89930c3a92f5e0d1482f0b
[4] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4a8c416602d97a4e2073ed563d4d4c7627de19cf
[5] https://datatracker.ietf.org/doc/html/rfc4884
[6] https://gist.github.com/idosch/5013448cdb5e9e060e6bfdc8b433577c
[7] https://datatracker.ietf.org/doc/html/rfc8883
[8] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=eba75c587e811d3249c8bd50d22bb2266ccd3c0f
[9] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=01370434df85eb76ecb1527a4466013c4aca2436
[10] https://datatracker.ietf.org/doc/html/rfc4884#section-5.3
[11] https://datatracker.ietf.org/doc/html/draft-ietf-intarea-extended-icmp-nodeid-04
[12] https://lore.kernel.org/netdev/20210317221959.4410-1-ishaangandhi@gmail.com/
[13] https://lore.kernel.org/netdev/aPpMItF35gwpgzZx@shredder/
[14] https://lore.kernel.org/netdev/20251022065349.434123-1-idosch@nvidia.com/
====================
Link: https://patch.msgid.link/20251027082232.232571-1-idosch@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
borkmann
pushed a commit
that referenced
this pull request
Oct 31, 2025
The original code causes a circular locking dependency found by lockdep. ====================================================== WARNING: possible circular locking dependency detected 6.16.0-rc6-lgci-xe-xe-pw-151626v3+ #1 Tainted: G S U ------------------------------------------------------ xe_fault_inject/5091 is trying to acquire lock: ffff888156815688 ((work_completion)(&(&devcd->del_wk)->work)){+.+.}-{0:0}, at: __flush_work+0x25d/0x660 but task is already holding lock: ffff888156815620 (&devcd->mutex){+.+.}-{3:3}, at: dev_coredump_put+0x3f/0xa0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (&devcd->mutex){+.+.}-{3:3}: mutex_lock_nested+0x4e/0xc0 devcd_data_write+0x27/0x90 sysfs_kf_bin_write+0x80/0xf0 kernfs_fop_write_iter+0x169/0x220 vfs_write+0x293/0x560 ksys_write+0x72/0xf0 __x64_sys_write+0x19/0x30 x64_sys_call+0x2bf/0x2660 do_syscall_64+0x93/0xb60 entry_SYSCALL_64_after_hwframe+0x76/0x7e -> #1 (kn->active#236){++++}-{0:0}: kernfs_drain+0x1e2/0x200 __kernfs_remove+0xae/0x400 kernfs_remove_by_name_ns+0x5d/0xc0 remove_files+0x54/0x70 sysfs_remove_group+0x3d/0xa0 sysfs_remove_groups+0x2e/0x60 device_remove_attrs+0xc7/0x100 device_del+0x15d/0x3b0 devcd_del+0x19/0x30 process_one_work+0x22b/0x6f0 worker_thread+0x1e8/0x3d0 kthread+0x11c/0x250 ret_from_fork+0x26c/0x2e0 ret_from_fork_asm+0x1a/0x30 -> #0 ((work_completion)(&(&devcd->del_wk)->work)){+.+.}-{0:0}: __lock_acquire+0x1661/0x2860 lock_acquire+0xc4/0x2f0 __flush_work+0x27a/0x660 flush_delayed_work+0x5d/0xa0 dev_coredump_put+0x63/0xa0 xe_driver_devcoredump_fini+0x12/0x20 [xe] devm_action_release+0x12/0x30 release_nodes+0x3a/0x120 devres_release_all+0x8a/0xd0 device_unbind_cleanup+0x12/0x80 device_release_driver_internal+0x23a/0x280 device_driver_detach+0x14/0x20 unbind_store+0xaf/0xc0 drv_attr_store+0x21/0x50 sysfs_kf_write+0x4a/0x80 kernfs_fop_write_iter+0x169/0x220 vfs_write+0x293/0x560 ksys_write+0x72/0xf0 __x64_sys_write+0x19/0x30 x64_sys_call+0x2bf/0x2660 do_syscall_64+0x93/0xb60 entry_SYSCALL_64_after_hwframe+0x76/0x7e other info that might help us debug this: Chain exists of: (work_completion)(&(&devcd->del_wk)->work) --> kn->active#236 --> &devcd->mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&devcd->mutex); lock(kn->active#236); lock(&devcd->mutex); lock((work_completion)(&(&devcd->del_wk)->work)); *** DEADLOCK *** 5 locks held by xe_fault_inject/5091: #0: ffff8881129f9488 (sb_writers#5){.+.+}-{0:0}, at: ksys_write+0x72/0xf0 #1: ffff88810c755078 (&of->mutex#2){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x123/0x220 #2: ffff8881054811a0 (&dev->mutex){....}-{3:3}, at: device_release_driver_internal+0x55/0x280 #3: ffff888156815620 (&devcd->mutex){+.+.}-{3:3}, at: dev_coredump_put+0x3f/0xa0 #4: ffffffff8359e020 (rcu_read_lock){....}-{1:2}, at: __flush_work+0x72/0x660 stack backtrace: CPU: 14 UID: 0 PID: 5091 Comm: xe_fault_inject Tainted: G S U 6.16.0-rc6-lgci-xe-xe-pw-151626v3+ #1 PREEMPT_{RT,(lazy)} Tainted: [S]=CPU_OUT_OF_SPEC, [U]=USER Hardware name: Micro-Star International Co., Ltd. MS-7D25/PRO Z690-A DDR4(MS-7D25), BIOS 1.10 12/13/2021 Call Trace: <TASK> dump_stack_lvl+0x91/0xf0 dump_stack+0x10/0x20 print_circular_bug+0x285/0x360 check_noncircular+0x135/0x150 ? register_lock_class+0x48/0x4a0 __lock_acquire+0x1661/0x2860 lock_acquire+0xc4/0x2f0 ? __flush_work+0x25d/0x660 ? mark_held_locks+0x46/0x90 ? __flush_work+0x25d/0x660 __flush_work+0x27a/0x660 ? __flush_work+0x25d/0x660 ? trace_hardirqs_on+0x1e/0xd0 ? __pfx_wq_barrier_func+0x10/0x10 flush_delayed_work+0x5d/0xa0 dev_coredump_put+0x63/0xa0 xe_driver_devcoredump_fini+0x12/0x20 [xe] devm_action_release+0x12/0x30 release_nodes+0x3a/0x120 devres_release_all+0x8a/0xd0 device_unbind_cleanup+0x12/0x80 device_release_driver_internal+0x23a/0x280 ? bus_find_device+0xa8/0xe0 device_driver_detach+0x14/0x20 unbind_store+0xaf/0xc0 drv_attr_store+0x21/0x50 sysfs_kf_write+0x4a/0x80 kernfs_fop_write_iter+0x169/0x220 vfs_write+0x293/0x560 ksys_write+0x72/0xf0 __x64_sys_write+0x19/0x30 x64_sys_call+0x2bf/0x2660 do_syscall_64+0x93/0xb60 ? __f_unlock_pos+0x15/0x20 ? __x64_sys_getdents64+0x9b/0x130 ? __pfx_filldir64+0x10/0x10 ? do_syscall_64+0x1a2/0xb60 ? clear_bhb_loop+0x30/0x80 ? clear_bhb_loop+0x30/0x80 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x76e292edd574 Code: c7 00 16 00 00 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 80 3d d5 ea 0e 00 00 74 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 c3 0f 1f 00 55 48 89 e5 48 83 ec 20 48 89 RSP: 002b:00007fffe247a828 EFLAGS: 00000202 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 000076e292edd574 RDX: 000000000000000c RSI: 00006267f6306063 RDI: 000000000000000b RBP: 000000000000000c R08: 000076e292fc4b20 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000202 R12: 00006267f6306063 R13: 000000000000000b R14: 00006267e6859c00 R15: 000076e29322a000 </TASK> xe 0000:03:00.0: [drm] Xe device coredump has been deleted. Fixes: 01daccf ("devcoredump : Serialize devcd_del work") Cc: Mukesh Ojha <quic_mojha@quicinc.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Rafael J. Wysocki <rafael@kernel.org> Cc: Danilo Krummrich <dakr@kernel.org> Cc: linux-kernel@vger.kernel.org Cc: stable@vger.kernel.org # v6.1+ Signed-off-by: Maarten Lankhorst <dev@lankhorst.se> Cc: Matthew Brost <matthew.brost@intel.com> Acked-by: Mukesh Ojha <mukesh.ojha@oss.qualcomm.com> Link: https://lore.kernel.org/r/20250723142416.1020423-1-dev@lankhorst.se Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
borkmann
pushed a commit
that referenced
this pull request
Nov 18, 2025
Michael Chan says: ==================== bnxt_en: Bug fixes Patches 1, 3, and 4 are bug fixes related to the FW log tracing driver coredump feature recently added in 6.13. Patch #1 adds the necessary call to shutdown the FW logging DMA during PCI shutdown. Patch #3 fixes a possible null pointer derefernce when using early versions of the FW with this feature. Patch #4 adds the coredump header information unconditionally to make it more robust. Patch #2 fixes a possible memory leak during PTP shutdown. Patch #5 eliminates a dmesg warning when doing devlink reload. ==================== Link: https://patch.msgid.link/20251104005700.542174-1-michael.chan@broadcom.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
borkmann
pushed a commit
that referenced
this pull request
Nov 18, 2025
…ernel/git/ath/ath Jeff Johnson says: ================== ath.git patches for v6.19 (#2) Just one 2-patch series for this PR. Once pulled into wireless-next, ath-next will fast-forward, and that will provide the baseline for merging ath12k-ng into ath-next. ================== Link: https://patch.msgid.link/15a98cae-0274-45f4-9b8e-be6fa9720884@oss.qualcomm.com Signed-off-by: Johannes Berg <johannes.berg@intel.com>
borkmann
pushed a commit
that referenced
this pull request
Nov 18, 2025
On completion of i915_vma_pin_ww(), a synchronous variant of dma_fence_work_commit() is called. When pinning a VMA to GGTT address space on a Cherry View family processor, or on a Broxton generation SoC with VTD enabled, i.e., when stop_machine() is then called from intel_ggtt_bind_vma(), that can potentially lead to lock inversion among reservation_ww and cpu_hotplug locks. [86.861179] ====================================================== [86.861193] WARNING: possible circular locking dependency detected [86.861209] 6.15.0-rc5-CI_DRM_16515-gca0305cadc2d+ #1 Tainted: G U [86.861226] ------------------------------------------------------ [86.861238] i915_module_loa/1432 is trying to acquire lock: [86.861252] ffffffff83489090 (cpu_hotplug_lock){++++}-{0:0}, at: stop_machine+0x1c/0x50 [86.861290] but task is already holding lock: [86.861303] ffffc90002e0b4c8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915] [86.862233] which lock already depends on the new lock. [86.862251] the existing dependency chain (in reverse order) is: [86.862265] -> #5 (reservation_ww_class_mutex){+.+.}-{3:3}: [86.862292] dma_resv_lockdep+0x19a/0x390 [86.862315] do_one_initcall+0x60/0x3f0 [86.862334] kernel_init_freeable+0x3cd/0x680 [86.862353] kernel_init+0x1b/0x200 [86.862369] ret_from_fork+0x47/0x70 [86.862383] ret_from_fork_asm+0x1a/0x30 [86.862399] -> #4 (reservation_ww_class_acquire){+.+.}-{0:0}: [86.862425] dma_resv_lockdep+0x178/0x390 [86.862440] do_one_initcall+0x60/0x3f0 [86.862454] kernel_init_freeable+0x3cd/0x680 [86.862470] kernel_init+0x1b/0x200 [86.862482] ret_from_fork+0x47/0x70 [86.862495] ret_from_fork_asm+0x1a/0x30 [86.862509] -> #3 (&mm->mmap_lock){++++}-{3:3}: [86.862531] down_read_killable+0x46/0x1e0 [86.862546] lock_mm_and_find_vma+0xa2/0x280 [86.862561] do_user_addr_fault+0x266/0x8e0 [86.862578] exc_page_fault+0x8a/0x2f0 [86.862593] asm_exc_page_fault+0x27/0x30 [86.862607] filldir64+0xeb/0x180 [86.862620] kernfs_fop_readdir+0x118/0x480 [86.862635] iterate_dir+0xcf/0x2b0 [86.862648] __x64_sys_getdents64+0x84/0x140 [86.862661] x64_sys_call+0x1058/0x2660 [86.862675] do_syscall_64+0x91/0xe90 [86.862689] entry_SYSCALL_64_after_hwframe+0x76/0x7e [86.862703] -> #2 (&root->kernfs_rwsem){++++}-{3:3}: [86.862725] down_write+0x3e/0xf0 [86.862738] kernfs_add_one+0x30/0x3c0 [86.862751] kernfs_create_dir_ns+0x53/0xb0 [86.862765] internal_create_group+0x134/0x4c0 [86.862779] sysfs_create_group+0x13/0x20 [86.862792] topology_add_dev+0x1d/0x30 [86.862806] cpuhp_invoke_callback+0x4b5/0x850 [86.862822] cpuhp_issue_call+0xbf/0x1f0 [86.862836] __cpuhp_setup_state_cpuslocked+0x111/0x320 [86.862852] __cpuhp_setup_state+0xb0/0x220 [86.862866] topology_sysfs_init+0x30/0x50 [86.862879] do_one_initcall+0x60/0x3f0 [86.862893] kernel_init_freeable+0x3cd/0x680 [86.862908] kernel_init+0x1b/0x200 [86.862921] ret_from_fork+0x47/0x70 [86.862934] ret_from_fork_asm+0x1a/0x30 [86.862947] -> #1 (cpuhp_state_mutex){+.+.}-{3:3}: [86.862969] __mutex_lock+0xaa/0xed0 [86.862982] mutex_lock_nested+0x1b/0x30 [86.862995] __cpuhp_setup_state_cpuslocked+0x67/0x320 [86.863012] __cpuhp_setup_state+0xb0/0x220 [86.863026] page_alloc_init_cpuhp+0x2d/0x60 [86.863041] mm_core_init+0x22/0x2d0 [86.863054] start_kernel+0x576/0xbd0 [86.863068] x86_64_start_reservations+0x18/0x30 [86.863084] x86_64_start_kernel+0xbf/0x110 [86.863098] common_startup_64+0x13e/0x141 [86.863114] -> #0 (cpu_hotplug_lock){++++}-{0:0}: [86.863135] __lock_acquire+0x1635/0x2810 [86.863152] lock_acquire+0xc4/0x2f0 [86.863166] cpus_read_lock+0x41/0x100 [86.863180] stop_machine+0x1c/0x50 [86.863194] bxt_vtd_ggtt_insert_entries__BKL+0x3b/0x60 [i915] [86.863987] intel_ggtt_bind_vma+0x43/0x70 [i915] [86.864735] __vma_bind+0x55/0x70 [i915] [86.865510] fence_work+0x26/0xa0 [i915] [86.866248] fence_notify+0xa1/0x140 [i915] [86.866983] __i915_sw_fence_complete+0x8f/0x270 [i915] [86.867719] i915_sw_fence_commit+0x39/0x60 [i915] [86.868453] i915_vma_pin_ww+0x462/0x1360 [i915] [86.869228] i915_vma_pin.constprop.0+0x133/0x1d0 [i915] [86.870001] initial_plane_vma+0x307/0x840 [i915] [86.870774] intel_initial_plane_config+0x33f/0x670 [i915] [86.871546] intel_display_driver_probe_nogem+0x1c6/0x260 [i915] [86.872330] i915_driver_probe+0x7fa/0xe80 [i915] [86.873057] i915_pci_probe+0xe6/0x220 [i915] [86.873782] local_pci_probe+0x47/0xb0 [86.873802] pci_device_probe+0xf3/0x260 [86.873817] really_probe+0xf1/0x3c0 [86.873833] __driver_probe_device+0x8c/0x180 [86.873848] driver_probe_device+0x24/0xd0 [86.873862] __driver_attach+0x10f/0x220 [86.873876] bus_for_each_dev+0x7f/0xe0 [86.873892] driver_attach+0x1e/0x30 [86.873904] bus_add_driver+0x151/0x290 [86.873917] driver_register+0x5e/0x130 [86.873931] __pci_register_driver+0x7d/0x90 [86.873945] i915_pci_register_driver+0x23/0x30 [i915] [86.874678] i915_init+0x37/0x120 [i915] [86.875347] do_one_initcall+0x60/0x3f0 [86.875369] do_init_module+0x97/0x2a0 [86.875385] load_module+0x2c54/0x2d80 [86.875398] init_module_from_file+0x96/0xe0 [86.875413] idempotent_init_module+0x117/0x330 [86.875426] __x64_sys_finit_module+0x77/0x100 [86.875440] x64_sys_call+0x24de/0x2660 [86.875454] do_syscall_64+0x91/0xe90 [86.875470] entry_SYSCALL_64_after_hwframe+0x76/0x7e [86.875486] other info that might help us debug this: [86.875502] Chain exists of: cpu_hotplug_lock --> reservation_ww_class_acquire --> reservation_ww_class_mutex [86.875539] Possible unsafe locking scenario: [86.875552] CPU0 CPU1 [86.875563] ---- ---- [86.875573] lock(reservation_ww_class_mutex); [86.875588] lock(reservation_ww_class_acquire); [86.875606] lock(reservation_ww_class_mutex); [86.875624] rlock(cpu_hotplug_lock); [86.875637] *** DEADLOCK *** [86.875650] 3 locks held by i915_module_loa/1432: [86.875663] #0: ffff888101f5c1b0 (&dev->mutex){....}-{3:3}, at: __driver_attach+0x104/0x220 [86.875699] #1: ffffc90002e0b4a0 (reservation_ww_class_acquire){+.+.}-{0:0}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915] [86.876512] #2: ffffc90002e0b4c8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915] [86.877305] stack backtrace: [86.877326] CPU: 0 UID: 0 PID: 1432 Comm: i915_module_loa Tainted: G U 6.15.0-rc5-CI_DRM_16515-gca0305cadc2d+ #1 PREEMPT(voluntary) [86.877334] Tainted: [U]=USER [86.877336] Hardware name: /NUC5CPYB, BIOS PYBSWCEL.86A.0079.2020.0420.1316 04/20/2020 [86.877339] Call Trace: [86.877344] <TASK> [86.877353] dump_stack_lvl+0x91/0xf0 [86.877364] dump_stack+0x10/0x20 [86.877369] print_circular_bug+0x285/0x360 [86.877379] check_noncircular+0x135/0x150 [86.877390] __lock_acquire+0x1635/0x2810 [86.877403] lock_acquire+0xc4/0x2f0 [86.877408] ? stop_machine+0x1c/0x50 [86.877422] ? __pfx_bxt_vtd_ggtt_insert_entries__cb+0x10/0x10 [i915] [86.878173] cpus_read_lock+0x41/0x100 [86.878182] ? stop_machine+0x1c/0x50 [86.878191] ? __pfx_bxt_vtd_ggtt_insert_entries__cb+0x10/0x10 [i915] [86.878916] stop_machine+0x1c/0x50 [86.878927] bxt_vtd_ggtt_insert_entries__BKL+0x3b/0x60 [i915] [86.879652] intel_ggtt_bind_vma+0x43/0x70 [i915] [86.880375] __vma_bind+0x55/0x70 [i915] [86.881133] fence_work+0x26/0xa0 [i915] [86.881851] fence_notify+0xa1/0x140 [i915] [86.882566] __i915_sw_fence_complete+0x8f/0x270 [i915] [86.883286] i915_sw_fence_commit+0x39/0x60 [i915] [86.884003] i915_vma_pin_ww+0x462/0x1360 [i915] [86.884756] ? i915_vma_pin.constprop.0+0x6c/0x1d0 [i915] [86.885513] i915_vma_pin.constprop.0+0x133/0x1d0 [i915] [86.886281] initial_plane_vma+0x307/0x840 [i915] [86.887049] intel_initial_plane_config+0x33f/0x670 [i915] [86.887819] intel_display_driver_probe_nogem+0x1c6/0x260 [i915] [86.888587] i915_driver_probe+0x7fa/0xe80 [i915] [86.889293] ? mutex_unlock+0x12/0x20 [86.889301] ? drm_privacy_screen_get+0x171/0x190 [86.889308] ? acpi_dev_found+0x66/0x80 [86.889321] i915_pci_probe+0xe6/0x220 [i915] [86.890038] local_pci_probe+0x47/0xb0 [86.890049] pci_device_probe+0xf3/0x260 [86.890058] really_probe+0xf1/0x3c0 [86.890067] __driver_probe_device+0x8c/0x180 [86.890072] driver_probe_device+0x24/0xd0 [86.890078] __driver_attach+0x10f/0x220 [86.890083] ? __pfx___driver_attach+0x10/0x10 [86.890088] bus_for_each_dev+0x7f/0xe0 [86.890097] driver_attach+0x1e/0x30 [86.890101] bus_add_driver+0x151/0x290 [86.890107] driver_register+0x5e/0x130 [86.890113] __pci_register_driver+0x7d/0x90 [86.890119] i915_pci_register_driver+0x23/0x30 [i915] [86.890833] i915_init+0x37/0x120 [i915] [86.891482] ? __pfx_i915_init+0x10/0x10 [i915] [86.892135] do_one_initcall+0x60/0x3f0 [86.892145] ? __kmalloc_cache_noprof+0x33f/0x470 [86.892157] do_init_module+0x97/0x2a0 [86.892164] load_module+0x2c54/0x2d80 [86.892168] ? __kernel_read+0x15c/0x300 [86.892185] ? kernel_read_file+0x2b1/0x320 [86.892195] init_module_from_file+0x96/0xe0 [86.892199] ? init_module_from_file+0x96/0xe0 [86.892211] idempotent_init_module+0x117/0x330 [86.892224] __x64_sys_finit_module+0x77/0x100 [86.892230] x64_sys_call+0x24de/0x2660 [86.892236] do_syscall_64+0x91/0xe90 [86.892243] ? irqentry_exit+0x77/0xb0 [86.892249] ? sysvec_apic_timer_interrupt+0x57/0xc0 [86.892256] entry_SYSCALL_64_after_hwframe+0x76/0x7e [86.892261] RIP: 0033:0x7303e1b2725d [86.892271] Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 8b bb 0d 00 f7 d8 64 89 01 48 [86.892276] RSP: 002b:00007ffddd1fdb38 EFLAGS: 00000246 ORIG_RAX: 0000000000000139 [86.892281] RAX: ffffffffffffffda RBX: 00005d771d88fd90 RCX: 00007303e1b2725d [86.892285] RDX: 0000000000000000 RSI: 00005d771d893aa0 RDI: 000000000000000c [86.892287] RBP: 00007ffddd1fdbf0 R08: 0000000000000040 R09: 00007ffddd1fdb80 [86.892289] R10: 00007303e1c03b20 R11: 0000000000000246 R12: 00005d771d893aa0 [86.892292] R13: 0000000000000000 R14: 00005d771d88f0d0 R15: 00005d771d895710 [86.892304] </TASK> Call asynchronous variant of dma_fence_work_commit() in that case. v3: Provide more verbose in-line comment (Andi), - mention target environments in commit message. Fixes: 7d1c261 ("drm/i915: Take reservation lock around i915_vma_pin.") Closes: https://gitlab.freedesktop.org/drm/i915/kernel/-/issues/14985 Cc: Andi Shyti <andi.shyti@kernel.org> Signed-off-by: Janusz Krzysztofik <janusz.krzysztofik@linux.intel.com> Reviewed-by: Sebastian Brzezinka <sebastian.brzezinka@intel.com> Reviewed-by: Krzysztof Karas <krzysztof.karas@intel.com> Acked-by: Andi Shyti <andi.shyti@linux.intel.com> Signed-off-by: Andi Shyti <andi.shyti@linux.intel.com> Link: https://lore.kernel.org/r/20251023082925.351307-6-janusz.krzysztofik@linux.intel.com (cherry picked from commit 648ef13) Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
borkmann
pushed a commit
that referenced
this pull request
Nov 18, 2025
When a connector is connected but inactive (e.g., disabled by desktop environments), pipe_ctx->stream_res.tg will be destroyed. Then, reading odm_combine_segments causes kernel NULL pointer dereference. BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 16 UID: 0 PID: 26474 Comm: cat Not tainted 6.17.0+ #2 PREEMPT(lazy) e6a17af9ee6db7c63e9d90dbe5b28ccab67520c6 Hardware name: LENOVO 21Q4/LNVNB161216, BIOS PXCN25WW 03/27/2025 RIP: 0010:odm_combine_segments_show+0x93/0xf0 [amdgpu] Code: 41 83 b8 b0 00 00 00 01 75 6e 48 98 ba a1 ff ff ff 48 c1 e0 0c 48 8d 8c 07 d8 02 00 00 48 85 c9 74 2d 48 8b bc 07 f0 08 00 00 <48> 8b 07 48 8b 80 08 02 00> RSP: 0018:ffffd1bf4b953c58 EFLAGS: 00010286 RAX: 0000000000005000 RBX: ffff8e35976b02d0 RCX: ffff8e3aeed052d8 RDX: 00000000ffffffa1 RSI: ffff8e35a3120800 RDI: 0000000000000000 RBP: 0000000000000000 R08: ffff8e3580eb0000 R09: ffff8e35976b02d0 R10: ffffd1bf4b953c78 R11: 0000000000000000 R12: ffffd1bf4b953d08 R13: 0000000000040000 R14: 0000000000000001 R15: 0000000000000001 FS: 00007f44d3f9f740(0000) GS:ffff8e3caa47f000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 00000006485c2000 CR4: 0000000000f50ef0 PKRU: 55555554 Call Trace: <TASK> seq_read_iter+0x125/0x490 ? __alloc_frozen_pages_noprof+0x18f/0x350 seq_read+0x12c/0x170 full_proxy_read+0x51/0x80 vfs_read+0xbc/0x390 ? __handle_mm_fault+0xa46/0xef0 ? do_syscall_64+0x71/0x900 ksys_read+0x73/0xf0 do_syscall_64+0x71/0x900 ? count_memcg_events+0xc2/0x190 ? handle_mm_fault+0x1d7/0x2d0 ? do_user_addr_fault+0x21a/0x690 ? exc_page_fault+0x7e/0x1a0 entry_SYSCALL_64_after_hwframe+0x6c/0x74 RIP: 0033:0x7f44d4031687 Code: 48 89 fa 4c 89 df e8 58 b3 00 00 8b 93 08 03 00 00 59 5e 48 83 f8 fc 74 1a 5b c3 0f 1f 84 00 00 00 00 00 48 8b 44 24 10 0f 05 <5b> c3 0f 1f 80 00 00 00 00> RSP: 002b:00007ffdb4b5f0b0 EFLAGS: 00000202 ORIG_RAX: 0000000000000000 RAX: ffffffffffffffda RBX: 00007f44d3f9f740 RCX: 00007f44d4031687 RDX: 0000000000040000 RSI: 00007f44d3f5e000 RDI: 0000000000000003 RBP: 0000000000040000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000202 R12: 00007f44d3f5e000 R13: 0000000000000003 R14: 0000000000000000 R15: 0000000000040000 </TASK> Modules linked in: tls tcp_diag inet_diag xt_mark ccm snd_hrtimer snd_seq_dummy snd_seq_midi snd_seq_oss snd_seq_midi_event snd_rawmidi snd_seq snd_seq_device x> snd_hda_codec_atihdmi snd_hda_codec_realtek_lib lenovo_wmi_helpers think_lmi snd_hda_codec_generic snd_hda_codec_hdmi snd_soc_core kvm snd_compress uvcvideo sn> platform_profile joydev amd_pmc mousedev mac_hid sch_fq_codel uinput i2c_dev parport_pc ppdev lp parport nvme_fabrics loop nfnetlink ip_tables x_tables dm_cryp> CR2: 0000000000000000 ---[ end trace 0000000000000000 ]--- RIP: 0010:odm_combine_segments_show+0x93/0xf0 [amdgpu] Code: 41 83 b8 b0 00 00 00 01 75 6e 48 98 ba a1 ff ff ff 48 c1 e0 0c 48 8d 8c 07 d8 02 00 00 48 85 c9 74 2d 48 8b bc 07 f0 08 00 00 <48> 8b 07 48 8b 80 08 02 00> RSP: 0018:ffffd1bf4b953c58 EFLAGS: 00010286 RAX: 0000000000005000 RBX: ffff8e35976b02d0 RCX: ffff8e3aeed052d8 RDX: 00000000ffffffa1 RSI: ffff8e35a3120800 RDI: 0000000000000000 RBP: 0000000000000000 R08: ffff8e3580eb0000 R09: ffff8e35976b02d0 R10: ffffd1bf4b953c78 R11: 0000000000000000 R12: ffffd1bf4b953d08 R13: 0000000000040000 R14: 0000000000000001 R15: 0000000000000001 FS: 00007f44d3f9f740(0000) GS:ffff8e3caa47f000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 00000006485c2000 CR4: 0000000000f50ef0 PKRU: 55555554 Fix this by checking pipe_ctx->stream_res.tg before dereferencing. Fixes: 07926ba ("drm/amd/display: Add debugfs interface for ODM combine info") Signed-off-by: Rong Zhang <i@rong.moe> Reviewed-by: Mario Limoncello <mario.limonciello@amd.com> Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com> (cherry picked from commit f19bbec) Cc: stable@vger.kernel.org
borkmann
pushed a commit
that referenced
this pull request
Nov 18, 2025
into HEAD KVM/riscv fixes for 6.18, take #2 - Fix check for local interrupts on riscv32 - Read HGEIP CSR on the correct cpu when checking for IMSIC interrupts - Remove automatic I/O mapping from kvm_arch_prepare_memory_region()
borkmann
pushed a commit
that referenced
this pull request
Nov 18, 2025
Add VMX exit handlers for SEAMCALL and TDCALL to inject a #UD if a non-TD guest attempts to execute SEAMCALL or TDCALL. Neither SEAMCALL nor TDCALL is gated by any software enablement other than VMXON, and so will generate a VM-Exit instead of e.g. a native #UD when executed from the guest kernel. Note! No unprivileged DoS of the L1 kernel is possible as TDCALL and SEAMCALL #GP at CPL > 0, and the CPL check is performed prior to the VMX non-root (VM-Exit) check, i.e. userspace can't crash the VM. And for a nested guest, KVM forwards unknown exits to L1, i.e. an L2 kernel can crash itself, but not L1. Note #2! The Intel® Trust Domain CPU Architectural Extensions spec's pseudocode shows the CPL > 0 check for SEAMCALL coming _after_ the VM-Exit, but that appears to be a documentation bug (likely because the CPL > 0 check was incorrectly bundled with other lower-priority #GP checks). Testing on SPR and EMR shows that the CPL > 0 check is performed before the VMX non-root check, i.e. SEAMCALL #GPs when executed in usermode. Note #3! The aforementioned Trust Domain spec uses confusing pseudocode that says that SEAMCALL will #UD if executed "inSEAM", but "inSEAM" specifically means in SEAM Root Mode, i.e. in the TDX-Module. The long- form description explicitly states that SEAMCALL generates an exit when executed in "SEAM VMX non-root operation". But that's a moot point as the TDX-Module injects #UD if the guest attempts to execute SEAMCALL, as documented in the "Unconditionally Blocked Instructions" section of the TDX-Module base specification. Cc: stable@vger.kernel.org Cc: Kai Huang <kai.huang@intel.com> Cc: Xiaoyao Li <xiaoyao.li@intel.com> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Link: https://lore.kernel.org/r/20251016182148.69085-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
borkmann
pushed a commit
that referenced
this pull request
Nov 18, 2025
…/kernel/git/kvmarm/kvmarm into HEAD KVM/arm654 fixes for 6.18, take #2 * Core fixes - Fix trapping regression when no in-kernel irqchip is present (20251021094358.1963807-1-sascha.bischoff@arm.com) - Check host-provided, untrusted ranges and offsets in pKVM (20251016164541.3771235-1-vdonnefort@google.com) (20251017075710.2605118-1-sebastianene@google.com) - Fix regression restoring the ID_PFR1_EL1 register (20251030122707.2033690-1-maz@kernel.org - Fix vgic ITS locking issues when LPIs are not directly injected (20251107184847.1784820-1-oupton@kernel.org) * Test fixes - Correct target CPU programming in vgic_lpi_stress selftest (20251020145946.48288-1-mdittgen@amazon.de) - Fix exposure of SCTLR2_EL2 and ZCR_EL2 in get-reg-list selftest (20251023-b4-kvm-arm64-get-reg-list-sctlr-el2-v1-1-088f88ff992a@kernel.org) (20251024-kvm-arm64-get-reg-list-zcr-el2-v1-1-0cd0ff75e22f@kernel.org) * Misc - Update Oliver's email address (20251107012830.1708225-1-oupton@kernel.org)
borkmann
pushed a commit
that referenced
this pull request
Nov 18, 2025
When freeing indexed arrays, the corresponding free function should
be called for each entry of the indexed array. For example, for
for 'struct tc_act_attrs' 'tc_act_attrs_free(...)' needs to be called
for each entry.
Previously, memory leaks were reported when enabling the ASAN
analyzer.
=================================================================
==874==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 24 byte(s) in 1 object(s) allocated from:
#0 0x7f221fd20cb5 in malloc ./debug/gcc/gcc/libsanitizer/asan/asan_malloc_linux.cpp:67
#1 0x55c98db048af in tc_act_attrs_set_options_vlan_parms ../generated/tc-user.h:2813
#2 0x55c98db048af in main ./linux/tools/net/ynl/samples/tc-filter-add.c:71
Direct leak of 24 byte(s) in 1 object(s) allocated from:
#0 0x7f221fd20cb5 in malloc ./debug/gcc/gcc/libsanitizer/asan/asan_malloc_linux.cpp:67
#1 0x55c98db04a93 in tc_act_attrs_set_options_vlan_parms ../generated/tc-user.h:2813
#2 0x55c98db04a93 in main ./linux/tools/net/ynl/samples/tc-filter-add.c:74
Direct leak of 10 byte(s) in 2 object(s) allocated from:
#0 0x7f221fd20cb5 in malloc ./debug/gcc/gcc/libsanitizer/asan/asan_malloc_linux.cpp:67
#1 0x55c98db0527d in tc_act_attrs_set_kind ../generated/tc-user.h:1622
SUMMARY: AddressSanitizer: 58 byte(s) leaked in 4 allocation(s).
The following diff illustrates the changes introduced compared to the
previous version of the code.
void tc_flower_attrs_free(struct tc_flower_attrs *obj)
{
+ unsigned int i;
+
free(obj->indev);
+ for (i = 0; i < obj->_count.act; i++)
+ tc_act_attrs_free(&obj->act[i]);
free(obj->act);
free(obj->key_eth_dst);
free(obj->key_eth_dst_mask);
Signed-off-by: Zahari Doychev <zahari.doychev@linux.com>
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Link: https://patch.msgid.link/20251106151529.453026-3-zahari.doychev@linux.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
borkmann
pushed a commit
that referenced
this pull request
Jan 13, 2026
ctx->tcxt_list holds the tasks using this ring, and it's currently
protected by the normal ctx->uring_lock. However, this can cause a
circular locking issue, as reported by syzbot, where cancelations off
exec end up needing to remove an entry from this list:
======================================================
WARNING: possible circular locking dependency detected
syzkaller #0 Tainted: G L
------------------------------------------------------
syz.0.9999/12287 is trying to acquire lock:
ffff88805851c0a8 (&ctx->uring_lock){+.+.}-{4:4}, at: io_uring_del_tctx_node+0xf0/0x2c0 io_uring/tctx.c:179
but task is already holding lock:
ffff88802db5a2e0 (&sig->cred_guard_mutex){+.+.}-{4:4}, at: prepare_bprm_creds fs/exec.c:1360 [inline]
ffff88802db5a2e0 (&sig->cred_guard_mutex){+.+.}-{4:4}, at: bprm_execve+0xb9/0x1400 fs/exec.c:1733
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (&sig->cred_guard_mutex){+.+.}-{4:4}:
__mutex_lock_common kernel/locking/mutex.c:614 [inline]
__mutex_lock+0x187/0x1350 kernel/locking/mutex.c:776
proc_pid_attr_write+0x547/0x630 fs/proc/base.c:2837
vfs_write+0x27e/0xb30 fs/read_write.c:684
ksys_write+0x145/0x250 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xec/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #1 (sb_writers#3){.+.+}-{0:0}:
percpu_down_read_internal include/linux/percpu-rwsem.h:53 [inline]
percpu_down_read_freezable include/linux/percpu-rwsem.h:83 [inline]
__sb_start_write include/linux/fs/super.h:19 [inline]
sb_start_write+0x4d/0x1c0 include/linux/fs/super.h:125
mnt_want_write+0x41/0x90 fs/namespace.c:499
open_last_lookups fs/namei.c:4529 [inline]
path_openat+0xadd/0x3dd0 fs/namei.c:4784
do_filp_open+0x1fa/0x410 fs/namei.c:4814
io_openat2+0x3e0/0x5c0 io_uring/openclose.c:143
__io_issue_sqe+0x181/0x4b0 io_uring/io_uring.c:1792
io_issue_sqe+0x165/0x1060 io_uring/io_uring.c:1815
io_queue_sqe io_uring/io_uring.c:2042 [inline]
io_submit_sqe io_uring/io_uring.c:2320 [inline]
io_submit_sqes+0xbf4/0x2140 io_uring/io_uring.c:2434
__do_sys_io_uring_enter io_uring/io_uring.c:3280 [inline]
__se_sys_io_uring_enter+0x2e0/0x2b60 io_uring/io_uring.c:3219
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xec/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #0 (&ctx->uring_lock){+.+.}-{4:4}:
check_prev_add kernel/locking/lockdep.c:3165 [inline]
check_prevs_add kernel/locking/lockdep.c:3284 [inline]
validate_chain kernel/locking/lockdep.c:3908 [inline]
__lock_acquire+0x15a6/0x2cf0 kernel/locking/lockdep.c:5237
lock_acquire+0x107/0x340 kernel/locking/lockdep.c:5868
__mutex_lock_common kernel/locking/mutex.c:614 [inline]
__mutex_lock+0x187/0x1350 kernel/locking/mutex.c:776
io_uring_del_tctx_node+0xf0/0x2c0 io_uring/tctx.c:179
io_uring_clean_tctx+0xd4/0x1a0 io_uring/tctx.c:195
io_uring_cancel_generic+0x6ca/0x7d0 io_uring/cancel.c:646
io_uring_task_cancel include/linux/io_uring.h:24 [inline]
begin_new_exec+0x10ed/0x2440 fs/exec.c:1131
load_elf_binary+0x9f8/0x2d70 fs/binfmt_elf.c:1010
search_binary_handler fs/exec.c:1669 [inline]
exec_binprm fs/exec.c:1701 [inline]
bprm_execve+0x92e/0x1400 fs/exec.c:1753
do_execveat_common+0x510/0x6a0 fs/exec.c:1859
do_execve fs/exec.c:1933 [inline]
__do_sys_execve fs/exec.c:2009 [inline]
__se_sys_execve fs/exec.c:2004 [inline]
__x64_sys_execve+0x94/0xb0 fs/exec.c:2004
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xec/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
other info that might help us debug this:
Chain exists of:
&ctx->uring_lock --> sb_writers#3 --> &sig->cred_guard_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&sig->cred_guard_mutex);
lock(sb_writers#3);
lock(&sig->cred_guard_mutex);
lock(&ctx->uring_lock);
*** DEADLOCK ***
1 lock held by syz.0.9999/12287:
#0: ffff88802db5a2e0 (&sig->cred_guard_mutex){+.+.}-{4:4}, at: prepare_bprm_creds fs/exec.c:1360 [inline]
#0: ffff88802db5a2e0 (&sig->cred_guard_mutex){+.+.}-{4:4}, at: bprm_execve+0xb9/0x1400 fs/exec.c:1733
stack backtrace:
CPU: 0 UID: 0 PID: 12287 Comm: syz.0.9999 Tainted: G L syzkaller #0 PREEMPT(full)
Tainted: [L]=SOFTLOCKUP
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
Call Trace:
<TASK>
dump_stack_lvl+0xe8/0x150 lib/dump_stack.c:120
print_circular_bug+0x2e2/0x300 kernel/locking/lockdep.c:2043
check_noncircular+0x12e/0x150 kernel/locking/lockdep.c:2175
check_prev_add kernel/locking/lockdep.c:3165 [inline]
check_prevs_add kernel/locking/lockdep.c:3284 [inline]
validate_chain kernel/locking/lockdep.c:3908 [inline]
__lock_acquire+0x15a6/0x2cf0 kernel/locking/lockdep.c:5237
lock_acquire+0x107/0x340 kernel/locking/lockdep.c:5868
__mutex_lock_common kernel/locking/mutex.c:614 [inline]
__mutex_lock+0x187/0x1350 kernel/locking/mutex.c:776
io_uring_del_tctx_node+0xf0/0x2c0 io_uring/tctx.c:179
io_uring_clean_tctx+0xd4/0x1a0 io_uring/tctx.c:195
io_uring_cancel_generic+0x6ca/0x7d0 io_uring/cancel.c:646
io_uring_task_cancel include/linux/io_uring.h:24 [inline]
begin_new_exec+0x10ed/0x2440 fs/exec.c:1131
load_elf_binary+0x9f8/0x2d70 fs/binfmt_elf.c:1010
search_binary_handler fs/exec.c:1669 [inline]
exec_binprm fs/exec.c:1701 [inline]
bprm_execve+0x92e/0x1400 fs/exec.c:1753
do_execveat_common+0x510/0x6a0 fs/exec.c:1859
do_execve fs/exec.c:1933 [inline]
__do_sys_execve fs/exec.c:2009 [inline]
__se_sys_execve fs/exec.c:2004 [inline]
__x64_sys_execve+0x94/0xb0 fs/exec.c:2004
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xec/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7ff3a8b8f749
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ff3a9a97038 EFLAGS: 00000246 ORIG_RAX: 000000000000003b
RAX: ffffffffffffffda RBX: 00007ff3a8de5fa0 RCX: 00007ff3a8b8f749
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000200000000400
RBP: 00007ff3a8c13f91 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ff3a8de6038 R14: 00007ff3a8de5fa0 R15: 00007ff3a8f0fa28
</TASK>
Add a separate lock just for the tctx_list, tctx_lock. This can nest
under ->uring_lock, where necessary, and be used separately for list
manipulation. For the cancelation off exec side, this removes the
need to grab ->uring_lock, hence fixing the circular locking
dependency.
Reported-by: syzbot+b0e3b77ffaa8a4067ce5@syzkaller.appspotmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
borkmann
pushed a commit
that referenced
this pull request
Jan 13, 2026
After rename exchanging (either with the rename exchange operation or regular renames in multiple non-atomic steps) two inodes and at least one of them is a directory, we can end up with a log tree that contains only of the inodes and after a power failure that can result in an attempt to delete the other inode when it should not because it was not deleted before the power failure. In some case that delete attempt fails when the target inode is a directory that contains a subvolume inside it, since the log replay code is not prepared to deal with directory entries that point to root items (only inode items). 1) We have directories "dir1" (inode A) and "dir2" (inode B) under the same parent directory; 2) We have a file (inode C) under directory "dir1" (inode A); 3) We have a subvolume inside directory "dir2" (inode B); 4) All these inodes were persisted in a past transaction and we are currently at transaction N; 5) We rename the file (inode C), so at btrfs_log_new_name() we update inode C's last_unlink_trans to N; 6) We get a rename exchange for "dir1" (inode A) and "dir2" (inode B), so after the exchange "dir1" is inode B and "dir2" is inode A. During the rename exchange we call btrfs_log_new_name() for inodes A and B, but because they are directories, we don't update their last_unlink_trans to N; 7) An fsync against the file (inode C) is done, and because its inode has a last_unlink_trans with a value of N we log its parent directory (inode A) (through btrfs_log_all_parents(), called from btrfs_log_inode_parent()). 8) So we end up with inode B not logged, which now has the old name of inode A. At copy_inode_items_to_log(), when logging inode A, we did not check if we had any conflicting inode to log because inode A has a generation lower than the current transaction (created in a past transaction); 9) After a power failure, when replaying the log tree, since we find that inode A has a new name that conflicts with the name of inode B in the fs tree, we attempt to delete inode B... this is wrong since that directory was never deleted before the power failure, and because there is a subvolume inside that directory, attempting to delete it will fail since replay_dir_deletes() and btrfs_unlink_inode() are not prepared to deal with dir items that point to roots instead of inodes. When that happens the mount fails and we get a stack trace like the following: [87.2314] BTRFS info (device dm-0): start tree-log replay [87.2318] BTRFS critical (device dm-0): failed to delete reference to subvol, root 5 inode 256 parent 259 [87.2332] ------------[ cut here ]------------ [87.2338] BTRFS: Transaction aborted (error -2) [87.2346] WARNING: CPU: 1 PID: 638968 at fs/btrfs/inode.c:4345 __btrfs_unlink_inode+0x416/0x440 [btrfs] [87.2368] Modules linked in: btrfs loop dm_thin_pool (...) [87.2470] CPU: 1 UID: 0 PID: 638968 Comm: mount Tainted: G W 6.18.0-rc7-btrfs-next-218+ #2 PREEMPT(full) [87.2489] Tainted: [W]=WARN [87.2494] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 [87.2514] RIP: 0010:__btrfs_unlink_inode+0x416/0x440 [btrfs] [87.2538] Code: c0 89 04 24 (...) [87.2568] RSP: 0018:ffffc0e741f4b9b8 EFLAGS: 00010286 [87.2574] RAX: 0000000000000000 RBX: ffff9d3ec8a6cf60 RCX: 0000000000000000 [87.2582] RDX: 0000000000000002 RSI: ffffffff84ab45a1 RDI: 00000000ffffffff [87.2591] RBP: ffff9d3ec8a6ef20 R08: 0000000000000000 R09: ffffc0e741f4b840 [87.2599] R10: ffff9d45dc1fffa8 R11: 0000000000000003 R12: ffff9d3ee26d77e0 [87.2608] R13: ffffc0e741f4ba98 R14: ffff9d4458040800 R15: ffff9d44b6b7ca10 [87.2618] FS: 00007f7b9603a840(0000) GS:ffff9d4658982000(0000) knlGS:0000000000000000 [87.2629] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [87.2637] CR2: 00007ffc9ec33b98 CR3: 000000011273e003 CR4: 0000000000370ef0 [87.2648] Call Trace: [87.2651] <TASK> [87.2654] btrfs_unlink_inode+0x15/0x40 [btrfs] [87.2661] unlink_inode_for_log_replay+0x27/0xf0 [btrfs] [87.2669] check_item_in_log+0x1ea/0x2c0 [btrfs] [87.2676] replay_dir_deletes+0x16b/0x380 [btrfs] [87.2684] fixup_inode_link_count+0x34b/0x370 [btrfs] [87.2696] fixup_inode_link_counts+0x41/0x160 [btrfs] [87.2703] btrfs_recover_log_trees+0x1ff/0x7c0 [btrfs] [87.2711] ? __pfx_replay_one_buffer+0x10/0x10 [btrfs] [87.2719] open_ctree+0x10bb/0x15f0 [btrfs] [87.2726] btrfs_get_tree.cold+0xb/0x16c [btrfs] [87.2734] ? fscontext_read+0x15c/0x180 [87.2740] ? rw_verify_area+0x50/0x180 [87.2746] vfs_get_tree+0x25/0xd0 [87.2750] vfs_cmd_create+0x59/0xe0 [87.2755] __do_sys_fsconfig+0x4f6/0x6b0 [87.2760] do_syscall_64+0x50/0x1220 [87.2764] entry_SYSCALL_64_after_hwframe+0x76/0x7e [87.2770] RIP: 0033:0x7f7b9625f4aa [87.2775] Code: 73 01 c3 48 (...) [87.2803] RSP: 002b:00007ffc9ec35b08 EFLAGS: 00000246 ORIG_RAX: 00000000000001af [87.2817] RAX: ffffffffffffffda RBX: 0000558bfa91ac20 RCX: 00007f7b9625f4aa [87.2829] RDX: 0000000000000000 RSI: 0000000000000006 RDI: 0000000000000003 [87.2842] RBP: 0000558bfa91b120 R08: 0000000000000000 R09: 0000000000000000 [87.2854] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 [87.2864] R13: 00007f7b963f1580 R14: 00007f7b963f326c R15: 00007f7b963d8a23 [87.2877] </TASK> [87.2882] ---[ end trace 0000000000000000 ]--- [87.2891] BTRFS: error (device dm-0 state A) in __btrfs_unlink_inode:4345: errno=-2 No such entry [87.2904] BTRFS: error (device dm-0 state EAO) in do_abort_log_replay:191: errno=-2 No such entry [87.2915] BTRFS critical (device dm-0 state EAO): log tree (for root 5) leaf currently being processed (slot 7 key (258 12 257)): [87.2929] BTRFS info (device dm-0 state EAO): leaf 30736384 gen 10 total ptrs 7 free space 15712 owner 18446744073709551610 [87.2929] BTRFS info (device dm-0 state EAO): refs 3 lock_owner 0 current 638968 [87.2929] item 0 key (257 INODE_ITEM 0) itemoff 16123 itemsize 160 [87.2929] inode generation 9 transid 10 size 0 nbytes 0 [87.2929] block group 0 mode 40755 links 1 uid 0 gid 0 [87.2929] rdev 0 sequence 7 flags 0x0 [87.2929] atime 1765464494.678070921 [87.2929] ctime 1765464494.686606513 [87.2929] mtime 1765464494.686606513 [87.2929] otime 1765464494.678070921 [87.2929] item 1 key (257 INODE_REF 256) itemoff 16109 itemsize 14 [87.2929] index 4 name_len 4 [87.2929] item 2 key (257 DIR_LOG_INDEX 2) itemoff 16101 itemsize 8 [87.2929] dir log end 2 [87.2929] item 3 key (257 DIR_LOG_INDEX 3) itemoff 16093 itemsize 8 [87.2929] dir log end 18446744073709551615 [87.2930] item 4 key (257 DIR_INDEX 3) itemoff 16060 itemsize 33 [87.2930] location key (258 1 0) type 1 [87.2930] transid 10 data_len 0 name_len 3 [87.2930] item 5 key (258 INODE_ITEM 0) itemoff 15900 itemsize 160 [87.2930] inode generation 9 transid 10 size 0 nbytes 0 [87.2930] block group 0 mode 100644 links 1 uid 0 gid 0 [87.2930] rdev 0 sequence 2 flags 0x0 [87.2930] atime 1765464494.678456467 [87.2930] ctime 1765464494.686606513 [87.2930] mtime 1765464494.678456467 [87.2930] otime 1765464494.678456467 [87.2930] item 6 key (258 INODE_REF 257) itemoff 15887 itemsize 13 [87.2930] index 3 name_len 3 [87.2930] BTRFS critical (device dm-0 state EAO): log replay failed in unlink_inode_for_log_replay:1045 for root 5, stage 3, with error -2: failed to unlink inode 256 parent dir 259 name subvol root 5 [87.2963] BTRFS: error (device dm-0 state EAO) in btrfs_recover_log_trees:7743: errno=-2 No such entry [87.2981] BTRFS: error (device dm-0 state EAO) in btrfs_replay_log:2083: errno=-2 No such entry (Failed to recover log tr So fix this by changing copy_inode_items_to_log() to always detect if there are conflicting inodes for the ref/extref of the inode being logged even if the inode was created in a past transaction. A test case for fstests will follow soon. CC: stable@vger.kernel.org # 6.1+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
borkmann
pushed a commit
that referenced
this pull request
Jan 13, 2026
…te in qfq_reset `qfq_class->leaf_qdisc->q.qlen > 0` does not imply that the class itself is active. Two qfq_class objects may point to the same leaf_qdisc. This happens when: 1. one QFQ qdisc is attached to the dev as the root qdisc, and 2. another QFQ qdisc is temporarily referenced (e.g., via qdisc_get() / qdisc_put()) and is pending to be destroyed, as in function tc_new_tfilter. When packets are enqueued through the root QFQ qdisc, the shared leaf_qdisc->q.qlen increases. At the same time, the second QFQ qdisc triggers qdisc_put and qdisc_destroy: the qdisc enters qfq_reset() with its own q->q.qlen == 0, but its class's leaf qdisc->q.qlen > 0. Therefore, the qfq_reset would wrongly deactivate an inactive aggregate and trigger a null-deref in qfq_deactivate_agg: [ 0.903172] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 0.903571] #PF: supervisor write access in kernel mode [ 0.903860] #PF: error_code(0x0002) - not-present page [ 0.904177] PGD 10299b067 P4D 10299b067 PUD 10299c067 PMD 0 [ 0.904502] Oops: Oops: 0002 [#1] SMP NOPTI [ 0.904737] CPU: 0 UID: 0 PID: 135 Comm: exploit Not tainted 6.19.0-rc3+ #2 NONE [ 0.905157] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.17.0-0-gb52ca86e094d-prebuilt.qemu.org 04/01/2014 [ 0.905754] RIP: 0010:qfq_deactivate_agg (include/linux/list.h:992 (discriminator 2) include/linux/list.h:1006 (discriminator 2) net/sched/sch_qfq.c:1367 (discriminator 2) net/sched/sch_qfq.c:1393 (discriminator 2)) [ 0.906046] Code: 0f 84 4d 01 00 00 48 89 70 18 8b 4b 10 48 c7 c2 ff ff ff ff 48 8b 78 08 48 d3 e2 48 21 f2 48 2b 13 48 8b 30 48 d3 ea 8b 4b 18 0 Code starting with the faulting instruction =========================================== 0: 0f 84 4d 01 00 00 je 0x153 6: 48 89 70 18 mov %rsi,0x18(%rax) a: 8b 4b 10 mov 0x10(%rbx),%ecx d: 48 c7 c2 ff ff ff ff mov $0xffffffffffffffff,%rdx 14: 48 8b 78 08 mov 0x8(%rax),%rdi 18: 48 d3 e2 shl %cl,%rdx 1b: 48 21 f2 and %rsi,%rdx 1e: 48 2b 13 sub (%rbx),%rdx 21: 48 8b 30 mov (%rax),%rsi 24: 48 d3 ea shr %cl,%rdx 27: 8b 4b 18 mov 0x18(%rbx),%ecx ... [ 0.907095] RSP: 0018:ffffc900004a39a0 EFLAGS: 00010246 [ 0.907368] RAX: ffff8881043a0880 RBX: ffff888102953340 RCX: 0000000000000000 [ 0.907723] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 [ 0.908100] RBP: ffff888102952180 R08: 0000000000000000 R09: 0000000000000000 [ 0.908451] R10: ffff8881043a0000 R11: 0000000000000000 R12: ffff888102952000 [ 0.908804] R13: ffff888102952180 R14: ffff8881043a0ad8 R15: ffff8881043a0880 [ 0.909179] FS: 000000002a1a0380(0000) GS:ffff888196d8d000(0000) knlGS:0000000000000000 [ 0.909572] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 0.909857] CR2: 0000000000000000 CR3: 0000000102993002 CR4: 0000000000772ef0 [ 0.910247] PKRU: 55555554 [ 0.910391] Call Trace: [ 0.910527] <TASK> [ 0.910638] qfq_reset_qdisc (net/sched/sch_qfq.c:357 net/sched/sch_qfq.c:1485) [ 0.910826] qdisc_reset (include/linux/skbuff.h:2195 include/linux/skbuff.h:2501 include/linux/skbuff.h:3424 include/linux/skbuff.h:3430 net/sched/sch_generic.c:1036) [ 0.911040] __qdisc_destroy (net/sched/sch_generic.c:1076) [ 0.911236] tc_new_tfilter (net/sched/cls_api.c:2447) [ 0.911447] rtnetlink_rcv_msg (net/core/rtnetlink.c:6958) [ 0.911663] ? __pfx_rtnetlink_rcv_msg (net/core/rtnetlink.c:6861) [ 0.911894] netlink_rcv_skb (net/netlink/af_netlink.c:2550) [ 0.912100] netlink_unicast (net/netlink/af_netlink.c:1319 net/netlink/af_netlink.c:1344) [ 0.912296] ? __alloc_skb (net/core/skbuff.c:706) [ 0.912484] netlink_sendmsg (net/netlink/af_netlink.c:1894) [ 0.912682] sock_write_iter (net/socket.c:727 (discriminator 1) net/socket.c:742 (discriminator 1) net/socket.c:1195 (discriminator 1)) [ 0.912880] vfs_write (fs/read_write.c:593 fs/read_write.c:686) [ 0.913077] ksys_write (fs/read_write.c:738) [ 0.913252] do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1)) [ 0.913438] entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:131) [ 0.913687] RIP: 0033:0x424c34 [ 0.913844] Code: 89 02 48 c7 c0 ff ff ff ff eb bd 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 80 3d 2d 44 09 00 00 74 13 b8 01 00 00 00 0f 05 9 Code starting with the faulting instruction =========================================== 0: 89 02 mov %eax,(%rdx) 2: 48 c7 c0 ff ff ff ff mov $0xffffffffffffffff,%rax 9: eb bd jmp 0xffffffffffffffc8 b: 66 2e 0f 1f 84 00 00 cs nopw 0x0(%rax,%rax,1) 12: 00 00 00 15: 90 nop 16: f3 0f 1e fa endbr64 1a: 80 3d 2d 44 09 00 00 cmpb $0x0,0x9442d(%rip) # 0x9444e 21: 74 13 je 0x36 23: b8 01 00 00 00 mov $0x1,%eax 28: 0f 05 syscall 2a: 09 .byte 0x9 [ 0.914807] RSP: 002b:00007ffea1938b78 EFLAGS: 00000202 ORIG_RAX: 0000000000000001 [ 0.915197] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 0000000000424c34 [ 0.915556] RDX: 000000000000003c RSI: 000000002af378c0 RDI: 0000000000000003 [ 0.915912] RBP: 00007ffea1938bc0 R08: 00000000004b8820 R09: 0000000000000000 [ 0.916297] R10: 0000000000000001 R11: 0000000000000202 R12: 00007ffea1938d28 [ 0.916652] R13: 00007ffea1938d38 R14: 00000000004b3828 R15: 0000000000000001 [ 0.917039] </TASK> [ 0.917158] Modules linked in: [ 0.917316] CR2: 0000000000000000 [ 0.917484] ---[ end trace 0000000000000000 ]--- [ 0.917717] RIP: 0010:qfq_deactivate_agg (include/linux/list.h:992 (discriminator 2) include/linux/list.h:1006 (discriminator 2) net/sched/sch_qfq.c:1367 (discriminator 2) net/sched/sch_qfq.c:1393 (discriminator 2)) [ 0.917978] Code: 0f 84 4d 01 00 00 48 89 70 18 8b 4b 10 48 c7 c2 ff ff ff ff 48 8b 78 08 48 d3 e2 48 21 f2 48 2b 13 48 8b 30 48 d3 ea 8b 4b 18 0 Code starting with the faulting instruction =========================================== 0: 0f 84 4d 01 00 00 je 0x153 6: 48 89 70 18 mov %rsi,0x18(%rax) a: 8b 4b 10 mov 0x10(%rbx),%ecx d: 48 c7 c2 ff ff ff ff mov $0xffffffffffffffff,%rdx 14: 48 8b 78 08 mov 0x8(%rax),%rdi 18: 48 d3 e2 shl %cl,%rdx 1b: 48 21 f2 and %rsi,%rdx 1e: 48 2b 13 sub (%rbx),%rdx 21: 48 8b 30 mov (%rax),%rsi 24: 48 d3 ea shr %cl,%rdx 27: 8b 4b 18 mov 0x18(%rbx),%ecx ... [ 0.918902] RSP: 0018:ffffc900004a39a0 EFLAGS: 00010246 [ 0.919198] RAX: ffff8881043a0880 RBX: ffff888102953340 RCX: 0000000000000000 [ 0.919559] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 [ 0.919908] RBP: ffff888102952180 R08: 0000000000000000 R09: 0000000000000000 [ 0.920289] R10: ffff8881043a0000 R11: 0000000000000000 R12: ffff888102952000 [ 0.920648] R13: ffff888102952180 R14: ffff8881043a0ad8 R15: ffff8881043a0880 [ 0.921014] FS: 000000002a1a0380(0000) GS:ffff888196d8d000(0000) knlGS:0000000000000000 [ 0.921424] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 0.921710] CR2: 0000000000000000 CR3: 0000000102993002 CR4: 0000000000772ef0 [ 0.922097] PKRU: 55555554 [ 0.922240] Kernel panic - not syncing: Fatal exception [ 0.922590] Kernel Offset: disabled Fixes: 0545a30 ("pkt_sched: QFQ - quick fair queue scheduler") Signed-off-by: Xiang Mei <xmei5@asu.edu> Link: https://patch.msgid.link/20260106034100.1780779-1-xmei5@asu.edu Signed-off-by: Jakub Kicinski <kuba@kernel.org>
borkmann
pushed a commit
that referenced
this pull request
Jan 13, 2026
Michael Chan says: ==================== bnxt_en: Updates for net-next This patchset updates the driver with a FW interface update to support FEC stats histogram and NVRAM defragmentation. Patch #2 adds PTP cross timestamps [1]. Patch #3 adds FEC histogram stats. Patch #4 adds NVRAM defragmentation support that prevents FW update failure when NVRAM is fragmented. Patch #5 improves RSS distribution accuracy when certain number of rings is in use. The last patch adds ethtool .get_link_ext_state() support. ==================== Link: https://patch.msgid.link/20260108183521.215610-1-michael.chan@broadcom.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
borkmann
pushed a commit
that referenced
this pull request
Jan 13, 2026
In ath12k_mac_op_link_sta_statistics(), the atomic context scope introduced by dp_lock also covers firmware stats request. Since that request could block, below issue is hit: BUG: sleeping function called from invalid context at kernel/locking/mutex.c:575 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 6866, name: iw preempt_count: 201, expected: 0 RCU nest depth: 0, expected: 0 3 locks held by iw/6866: #0:[...] #1:[...] #2: ffff9748f43230c8 (&dp->dp_lock){+.-.}-{3:3}, at: ath12k_mac_op_link_sta_statistics+0xc6/0x380 [ath12k] Preemption disabled at: [<ffffffffc0349656>] ath12k_mac_op_link_sta_statistics+0xc6/0x380 [ath12k] Call Trace: <TASK> show_stack dump_stack_lvl dump_stack __might_resched.cold __might_sleep __mutex_lock mutex_lock_nested ath12k_mac_get_fw_stats ath12k_mac_op_link_sta_statistics </TASK> Since firmware stats request doesn't require protection from dp_lock, move it outside to fix this issue. While moving, also refine that code hunk to make function parameters get populated when really necessary. Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.1.c5-00302-QCAHMTSWPL_V1.0_V2.0_SILICONZ-1.115823.3 Signed-off-by: Baochen Qiang <baochen.qiang@oss.qualcomm.com> Reviewed-by: Vasanthakumar Thiagarajan <vasanthakumar.thiagarajan@oss.qualcomm.com> Link: https://patch.msgid.link/20251119-ath12k-ng-sleep-in-atomic-v1-1-5d1a726597db@oss.qualcomm.com Signed-off-by: Jeff Johnson <jeff.johnson@oss.qualcomm.com>
borkmann
pushed a commit
that referenced
this pull request
Jan 20, 2026
The GPIO controller is configured as non-sleeping but it uses generic
pinctrl helpers which use a mutex for synchronization.
This can cause the following lockdep splat with shared GPIOs enabled on
boards which have multiple devices using the same GPIO:
BUG: sleeping function called from invalid context at
kernel/locking/mutex.c:591
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 12, name:
kworker/u16:0
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
6 locks held by kworker/u16:0/12:
#0: ffff0001f0018d48 ((wq_completion)events_unbound#2){+.+.}-{0:0},
at: process_one_work+0x18c/0x604
#1: ffff8000842dbdf0 (deferred_probe_work){+.+.}-{0:0}, at:
process_one_work+0x1b4/0x604
#2: ffff0001f18498f8 (&dev->mutex){....}-{4:4}, at:
__device_attach+0x38/0x1b0
#3: ffff0001f75f1e90 (&gdev->srcu){.+.?}-{0:0}, at:
gpiod_direction_output_raw_commit+0x0/0x360
#4: ffff0001f46e3db8 (&shared_desc->spinlock){....}-{3:3}, at:
gpio_shared_proxy_direction_output+0xd0/0x144 [gpio_shared_proxy]
#5: ffff0001f180ee90 (&gdev->srcu){.+.?}-{0:0}, at:
gpiod_direction_output_raw_commit+0x0/0x360
irq event stamp: 81450
hardirqs last enabled at (81449): [<ffff8000813acba4>]
_raw_spin_unlock_irqrestore+0x74/0x78
hardirqs last disabled at (81450): [<ffff8000813abfb8>]
_raw_spin_lock_irqsave+0x84/0x88
softirqs last enabled at (79616): [<ffff8000811455fc>]
__alloc_skb+0x17c/0x1e8
softirqs last disabled at (79614): [<ffff8000811455fc>]
__alloc_skb+0x17c/0x1e8
CPU: 2 UID: 0 PID: 12 Comm: kworker/u16:0 Not tainted
6.19.0-rc4-next-20260105+ #11975 PREEMPT
Hardware name: Hardkernel ODROID-M1 (DT)
Workqueue: events_unbound deferred_probe_work_func
Call trace:
show_stack+0x18/0x24 (C)
dump_stack_lvl+0x90/0xd0
dump_stack+0x18/0x24
__might_resched+0x144/0x248
__might_sleep+0x48/0x98
__mutex_lock+0x5c/0x894
mutex_lock_nested+0x24/0x30
pinctrl_get_device_gpio_range+0x44/0x128
pinctrl_gpio_direction+0x3c/0xe0
pinctrl_gpio_direction_output+0x14/0x20
rockchip_gpio_direction_output+0xb8/0x19c
gpiochip_direction_output+0x38/0x94
gpiod_direction_output_raw_commit+0x1d8/0x360
gpiod_direction_output_nonotify+0x7c/0x230
gpiod_direction_output+0x34/0xf8
gpio_shared_proxy_direction_output+0xec/0x144 [gpio_shared_proxy]
gpiochip_direction_output+0x38/0x94
gpiod_direction_output_raw_commit+0x1d8/0x360
gpiod_direction_output_nonotify+0x7c/0x230
gpiod_configure_flags+0xbc/0x480
gpiod_find_and_request+0x1a0/0x574
gpiod_get_index+0x58/0x84
devm_gpiod_get_index+0x20/0xb4
devm_gpiod_get_optional+0x18/0x30
rockchip_pcie_probe+0x98/0x380
platform_probe+0x5c/0xac
really_probe+0xbc/0x298
Fixes: 936ee26 ("gpio/rockchip: add driver for rockchip gpio")
Cc: stable@vger.kernel.org
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Closes: https://lore.kernel.org/all/d035fc29-3b03-4cd6-b8ec-001f93540bc6@samsung.com/
Acked-by: Heiko Stuebner <heiko@sntech.de>
Link: https://lore.kernel.org/r/20260106090011.21603-1-bartosz.golaszewski@oss.qualcomm.com
Signed-off-by: Bartosz Golaszewski <bartosz.golaszewski@oss.qualcomm.com>
borkmann
pushed a commit
that referenced
this pull request
Jan 20, 2026
…ked_inode() In btrfs_read_locked_inode() we are calling btrfs_init_file_extent_tree() while holding a path with a read locked leaf from a subvolume tree, and btrfs_init_file_extent_tree() may do a GFP_KERNEL allocation, which can trigger reclaim. This can create a circular lock dependency which lockdep warns about with the following splat: [6.1433] ====================================================== [6.1574] WARNING: possible circular locking dependency detected [6.1583] 6.18.0+ #4 Tainted: G U [6.1591] ------------------------------------------------------ [6.1599] kswapd0/117 is trying to acquire lock: [6.1606] ffff8d9b6333c5b8 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x39/0x2f0 [6.1625] but task is already holding lock: [6.1633] ffffffffa4ab8ce0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x195/0xc60 [6.1646] which lock already depends on the new lock. [6.1657] the existing dependency chain (in reverse order) is: [6.1667] -> #2 (fs_reclaim){+.+.}-{0:0}: [6.1677] fs_reclaim_acquire+0x9d/0xd0 [6.1685] __kmalloc_cache_noprof+0x59/0x750 [6.1694] btrfs_init_file_extent_tree+0x90/0x100 [6.1702] btrfs_read_locked_inode+0xc3/0x6b0 [6.1710] btrfs_iget+0xbb/0xf0 [6.1716] btrfs_lookup_dentry+0x3c5/0x8e0 [6.1724] btrfs_lookup+0x12/0x30 [6.1731] lookup_open.isra.0+0x1aa/0x6a0 [6.1739] path_openat+0x5f7/0xc60 [6.1746] do_filp_open+0xd6/0x180 [6.1753] do_sys_openat2+0x8b/0xe0 [6.1760] __x64_sys_openat+0x54/0xa0 [6.1768] do_syscall_64+0x97/0x3e0 [6.1776] entry_SYSCALL_64_after_hwframe+0x76/0x7e [6.1784] -> #1 (btrfs-tree-00){++++}-{3:3}: [6.1794] lock_release+0x127/0x2a0 [6.1801] up_read+0x1b/0x30 [6.1808] btrfs_search_slot+0x8e0/0xff0 [6.1817] btrfs_lookup_inode+0x52/0xd0 [6.1825] __btrfs_update_delayed_inode+0x73/0x520 [6.1833] btrfs_commit_inode_delayed_inode+0x11a/0x120 [6.1842] btrfs_log_inode+0x608/0x1aa0 [6.1849] btrfs_log_inode_parent+0x249/0xf80 [6.1857] btrfs_log_dentry_safe+0x3e/0x60 [6.1865] btrfs_sync_file+0x431/0x690 [6.1872] do_fsync+0x39/0x80 [6.1879] __x64_sys_fsync+0x13/0x20 [6.1887] do_syscall_64+0x97/0x3e0 [6.1894] entry_SYSCALL_64_after_hwframe+0x76/0x7e [6.1903] -> #0 (&delayed_node->mutex){+.+.}-{3:3}: [6.1913] __lock_acquire+0x15e9/0x2820 [6.1920] lock_acquire+0xc9/0x2d0 [6.1927] __mutex_lock+0xcc/0x10a0 [6.1934] __btrfs_release_delayed_node.part.0+0x39/0x2f0 [6.1944] btrfs_evict_inode+0x20b/0x4b0 [6.1952] evict+0x15a/0x2f0 [6.1958] prune_icache_sb+0x91/0xd0 [6.1966] super_cache_scan+0x150/0x1d0 [6.1974] do_shrink_slab+0x155/0x6f0 [6.1981] shrink_slab+0x48e/0x890 [6.1988] shrink_one+0x11a/0x1f0 [6.1995] shrink_node+0xbfd/0x1320 [6.1002] balance_pgdat+0x67f/0xc60 [6.1321] kswapd+0x1dc/0x3e0 [6.1643] kthread+0xff/0x240 [6.1965] ret_from_fork+0x223/0x280 [6.1287] ret_from_fork_asm+0x1a/0x30 [6.1616] other info that might help us debug this: [6.1561] Chain exists of: &delayed_node->mutex --> btrfs-tree-00 --> fs_reclaim [6.1503] Possible unsafe locking scenario: [6.1110] CPU0 CPU1 [6.1411] ---- ---- [6.1707] lock(fs_reclaim); [6.1998] lock(btrfs-tree-00); [6.1291] lock(fs_reclaim); [6.1581] lock(&delayed_node->mutex); [6.1874] *** DEADLOCK *** [6.1716] 2 locks held by kswapd0/117: [6.1999] #0: ffffffffa4ab8ce0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x195/0xc60 [6.1294] #1: ffff8d998344b0e0 (&type->s_umount_key#40){++++}- {3:3}, at: super_cache_scan+0x37/0x1d0 [6.1596] stack backtrace: [6.1183] CPU: 11 UID: 0 PID: 117 Comm: kswapd0 Tainted: G U 6.18.0+ #4 PREEMPT(lazy) [6.1185] Tainted: [U]=USER [6.1186] Hardware name: ASUS System Product Name/PRIME B560M-A AC, BIOS 2001 02/01/2023 [6.1187] Call Trace: [6.1187] <TASK> [6.1189] dump_stack_lvl+0x6e/0xa0 [6.1192] print_circular_bug.cold+0x17a/0x1c0 [6.1194] check_noncircular+0x175/0x190 [6.1197] __lock_acquire+0x15e9/0x2820 [6.1200] lock_acquire+0xc9/0x2d0 [6.1201] ? __btrfs_release_delayed_node.part.0+0x39/0x2f0 [6.1204] __mutex_lock+0xcc/0x10a0 [6.1206] ? __btrfs_release_delayed_node.part.0+0x39/0x2f0 [6.1208] ? __btrfs_release_delayed_node.part.0+0x39/0x2f0 [6.1211] ? __btrfs_release_delayed_node.part.0+0x39/0x2f0 [6.1213] __btrfs_release_delayed_node.part.0+0x39/0x2f0 [6.1215] btrfs_evict_inode+0x20b/0x4b0 [6.1217] ? lock_acquire+0xc9/0x2d0 [6.1220] evict+0x15a/0x2f0 [6.1222] prune_icache_sb+0x91/0xd0 [6.1224] super_cache_scan+0x150/0x1d0 [6.1226] do_shrink_slab+0x155/0x6f0 [6.1228] shrink_slab+0x48e/0x890 [6.1229] ? shrink_slab+0x2d2/0x890 [6.1231] shrink_one+0x11a/0x1f0 [6.1234] shrink_node+0xbfd/0x1320 [6.1236] ? shrink_node+0xa2d/0x1320 [6.1236] ? shrink_node+0xbd3/0x1320 [6.1239] ? balance_pgdat+0x67f/0xc60 [6.1239] balance_pgdat+0x67f/0xc60 [6.1241] ? finish_task_switch.isra.0+0xc4/0x2a0 [6.1246] kswapd+0x1dc/0x3e0 [6.1247] ? __pfx_autoremove_wake_function+0x10/0x10 [6.1249] ? __pfx_kswapd+0x10/0x10 [6.1250] kthread+0xff/0x240 [6.1251] ? __pfx_kthread+0x10/0x10 [6.1253] ret_from_fork+0x223/0x280 [6.1255] ? __pfx_kthread+0x10/0x10 [6.1257] ret_from_fork_asm+0x1a/0x30 [6.1260] </TASK> This is because: 1) The fsync task is holding an inode's delayed node mutex (for a directory) while calling __btrfs_update_delayed_inode() and that needs to do a search on the subvolume's btree (therefore read lock some extent buffers); 2) The lookup task, at btrfs_lookup(), triggered reclaim with the GFP_KERNEL allocation done by btrfs_init_file_extent_tree() while holding a read lock on a subvolume leaf; 3) The reclaim triggered kswapd which is doing inode eviction for the directory inode the fsync task is using as an argument to btrfs_commit_inode_delayed_inode() - but in that call chain we are trying to read lock the same leaf that the lookup task is holding while calling btrfs_init_file_extent_tree() and doing the GFP_KERNEL allocation. Fix this by calling btrfs_init_file_extent_tree() after we don't need the path anymore and release it in btrfs_read_locked_inode(). Reported-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> Link: https://lore.kernel.org/linux-btrfs/6e55113a22347c3925458a5d840a18401a38b276.camel@linux.intel.com/ Fixes: 8679d26 ("btrfs: initialize inode::file_extent_tree after i_mode has been set") Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
borkmann
pushed a commit
that referenced
this pull request
Jan 20, 2026
When forward-porting Rust Binder to 6.18, I neglected to take commit fb56fdf ("mm/list_lru: split the lock to per-cgroup scope") into account, and apparently I did not end up running the shrinker callback when I sanity tested the driver before submission. This leads to crashes like the following: ============================================ WARNING: possible recursive locking detected 6.18.0-mainline-maybe-dirty #1 Tainted: G IO -------------------------------------------- kswapd0/68 is trying to acquire lock: ffff956000fa18b0 (&l->lock){+.+.}-{2:2}, at: lock_list_lru_of_memcg+0x128/0x230 but task is already holding lock: ffff956000fa18b0 (&l->lock){+.+.}-{2:2}, at: rust_helper_spin_lock+0xd/0x20 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&l->lock); lock(&l->lock); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by kswapd0/68: #0: ffffffff90d2e260 (fs_reclaim){+.+.}-{0:0}, at: kswapd+0x597/0x1160 #1: ffff956000fa18b0 (&l->lock){+.+.}-{2:2}, at: rust_helper_spin_lock+0xd/0x20 #2: ffffffff90cf3680 (rcu_read_lock){....}-{1:2}, at: lock_list_lru_of_memcg+0x2d/0x230 To fix this, remove the spin_lock() call from rust_shrink_free_page(). Cc: stable <stable@kernel.org> Fixes: eafedbc ("rust_binder: add Rust Binder driver") Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://patch.msgid.link/20251202-binder-shrink-unspin-v1-1-263efb9ad625@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
borkmann
pushed a commit
that referenced
this pull request
Jan 26, 2026
…kernel/git/netfilter/nf-next Florian Westphal says: ==================== netfilter: updates for net-next There is an issue with interval matching in nftables rbtree set type: When userspace sends us set updates, there is a brief window where false negative lookups may occur from the data plane. Quoting Pablos original cover letter: This series addresses this issue by translating the rbtree, which keeps the intervals in order, to binary search. The array is published to packet path through RCU. The idea is to keep using the rbtree datastructure for control plane, which needs to deal with updates, then generate an array using this rbtree for binary search lookups. Patch #1 allows to call .remove in case .abort is defined, which is needed by this new approach. Only pipapo needs to skip .remove to speed. Patch #2 add the binary search array approach for interval matching. Patch #3 updates .get to use the binary search array to find for (closest or exact) interval matching. Patch #4 removes seqcount_rwlock_t as it is not needed anymore (new in this series). * tag 'nf-next-26-01-22' of https://git.kernel.org/pub/scm/linux/kernel/git/netfilter/nf-next: netfilter: nft_set_rbtree: remove seqcount_rwlock_t netfilter: nft_set_rbtree: use binary search array in get command netfilter: nft_set_rbtree: translate rbtree to array for binary search netfilter: nf_tables: add .abort_skip_removal flag for set types ==================== Link: https://patch.msgid.link/20260122162935.8581-1-fw@strlen.de Signed-off-by: Jakub Kicinski <kuba@kernel.org>
borkmann
pushed a commit
that referenced
this pull request
Jan 26, 2026
During device unmapping (triggered by module unload or explicit unmap), a refcount underflow occurs causing a use-after-free warning: [14747.574913] ------------[ cut here ]------------ [14747.574916] refcount_t: underflow; use-after-free. [14747.574917] WARNING: lib/refcount.c:28 at refcount_warn_saturate+0x55/0x90, CPU#9: kworker/9:1/378 [14747.574924] Modules linked in: rnbd_client(-) rtrs_client rnbd_server rtrs_server rtrs_core ... [14747.574998] CPU: 9 UID: 0 PID: 378 Comm: kworker/9:1 Tainted: G O N 6.19.0-rc3lblk-fnext+ torvalds#42 PREEMPT(voluntary) [14747.575005] Workqueue: rnbd_clt_wq unmap_device_work [rnbd_client] [14747.575010] RIP: 0010:refcount_warn_saturate+0x55/0x90 [14747.575037] Call Trace: [14747.575038] <TASK> [14747.575038] rnbd_clt_unmap_device+0x170/0x1d0 [rnbd_client] [14747.575044] process_one_work+0x211/0x600 [14747.575052] worker_thread+0x184/0x330 [14747.575055] ? __pfx_worker_thread+0x10/0x10 [14747.575058] kthread+0x10d/0x250 [14747.575062] ? __pfx_kthread+0x10/0x10 [14747.575066] ret_from_fork+0x319/0x390 [14747.575069] ? __pfx_kthread+0x10/0x10 [14747.575072] ret_from_fork_asm+0x1a/0x30 [14747.575083] </TASK> [14747.575096] ---[ end trace 0000000000000000 ]--- Befor this patch :- The bug is a double kobject_put() on dev->kobj during device cleanup. Kobject Lifecycle: kobject_init_and_add() sets kobj.kref = 1 (initialization) kobject_put() sets kobj.kref = 0 (should be called once) * Before this patch: rnbd_clt_unmap_device() rnbd_destroy_sysfs() kobject_del(&dev->kobj) [remove from sysfs] kobject_put(&dev->kobj) PUT #1 (WRONG!) kref: 1 to 0 rnbd_dev_release() kfree(dev) [DEVICE FREED!] rnbd_destroy_gen_disk() [use-after-free!] rnbd_clt_put_dev() refcount_dec_and_test(&dev->refcount) kobject_put(&dev->kobj) PUT #2 (UNDERFLOW!) kref: 0 to -1 [WARNING!] The first kobject_put() in rnbd_destroy_sysfs() prematurely frees the device via rnbd_dev_release(), then the second kobject_put() in rnbd_clt_put_dev() causes refcount underflow. * After this patch :- Remove kobject_put() from rnbd_destroy_sysfs(). This function should only remove sysfs visibility (kobject_del), not manage object lifetime. Call Graph (FIXED): rnbd_clt_unmap_device() rnbd_destroy_sysfs() kobject_del(&dev->kobj) [remove from sysfs only] [kref unchanged: 1] rnbd_destroy_gen_disk() [device still valid] rnbd_clt_put_dev() refcount_dec_and_test(&dev->refcount) kobject_put(&dev->kobj) ONLY PUT (CORRECT!) kref: 1 to 0 [BALANCED] rnbd_dev_release() kfree(dev) [CLEAN DESTRUCTION] This follows the kernel pattern where sysfs removal (kobject_del) is separate from object destruction (kobject_put). Fixes: 581cf83 ("block: rnbd: add .release to rnbd_dev_ktype") Signed-off-by: Chaitanya Kulkarni <ckulkarnilinux@gmail.com> Acked-by: Jack Wang <jinpu.wang@ionos.com> Reviewed-by: Jack Wang <jinpu.wang@ionos.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
borkmann
pushed a commit
that referenced
this pull request
Jan 26, 2026
Patch series "mm/hugetlb: fixes for PMD table sharing (incl. using mmu_gather)", v3. One functional fix, one performance regression fix, and two related comment fixes. I cleaned up my prototype I recently shared [1] for the performance fix, deferring most of the cleanups I had in the prototype to a later point. While doing that I identified the other things. The goal of this patch set is to be backported to stable trees "fairly" easily. At least patch #1 and #4. Patch #1 fixes hugetlb_pmd_shared() not detecting any sharing Patch #2 + #3 are simple comment fixes that patch #4 interacts with. Patch #4 is a fix for the reported performance regression due to excessive IPI broadcasts during fork()+exit(). The last patch is all about TLB flushes, IPIs and mmu_gather. Read: complicated There are plenty of cleanups in the future to be had + one reasonable optimization on x86. But that's all out of scope for this series. Runtime tested, with a focus on fixing the performance regression using the original reproducer [2] on x86. This patch (of 4): We switched from (wrongly) using the page count to an independent shared count. Now, shared page tables have a refcount of 1 (excluding speculative references) and instead use ptdesc->pt_share_count to identify sharing. We didn't convert hugetlb_pmd_shared(), so right now, we would never detect a shared PMD table as such, because sharing/unsharing no longer touches the refcount of a PMD table. Page migration, like mbind() or migrate_pages() would allow for migrating folios mapped into such shared PMD tables, even though the folios are not exclusive. In smaps we would account them as "private" although they are "shared", and we would be wrongly setting the PM_MMAP_EXCLUSIVE in the pagemap interface. Fix it by properly using ptdesc_pmd_is_shared() in hugetlb_pmd_shared(). Link: https://lkml.kernel.org/r/20251223214037.580860-1-david@kernel.org Link: https://lkml.kernel.org/r/20251223214037.580860-2-david@kernel.org Link: https://lore.kernel.org/all/8cab934d-4a56-44aa-b641-bfd7e23bd673@kernel.org/ [1] Link: https://lore.kernel.org/all/8cab934d-4a56-44aa-b641-bfd7e23bd673@kernel.org/ [2] Fixes: 59d9094 ("mm: hugetlb: independent PMD page table shared count") Signed-off-by: David Hildenbrand (Red Hat) <david@kernel.org> Reviewed-by: Rik van Riel <riel@surriel.com> Reviewed-by: Lance Yang <lance.yang@linux.dev> Tested-by: Lance Yang <lance.yang@linux.dev> Reviewed-by: Harry Yoo <harry.yoo@oracle.com> Tested-by: Laurence Oberman <loberman@redhat.com> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Acked-by: Oscar Salvador <osalvador@suse.de> Cc: Liu Shixin <liushixin2@huawei.com> Cc: Uschakow, Stanislav" <suschako@amazon.de> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
borkmann
pushed a commit
that referenced
this pull request
Jan 26, 2026
A null-ptr-deref was reported in the SCTP transmit path when SCTP-AUTH key initialization fails: ================================================================== KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f] CPU: 0 PID: 16 Comm: ksoftirqd/0 Tainted: G W 6.6.0 #2 RIP: 0010:sctp_packet_bundle_auth net/sctp/output.c:264 [inline] RIP: 0010:sctp_packet_append_chunk+0xb36/0x1260 net/sctp/output.c:401 Call Trace: sctp_packet_transmit_chunk+0x31/0x250 net/sctp/output.c:189 sctp_outq_flush_data+0xa29/0x26d0 net/sctp/outqueue.c:1111 sctp_outq_flush+0xc80/0x1240 net/sctp/outqueue.c:1217 sctp_cmd_interpreter.isra.0+0x19a5/0x62c0 net/sctp/sm_sideeffect.c:1787 sctp_side_effects net/sctp/sm_sideeffect.c:1198 [inline] sctp_do_sm+0x1a3/0x670 net/sctp/sm_sideeffect.c:1169 sctp_assoc_bh_rcv+0x33e/0x640 net/sctp/associola.c:1052 sctp_inq_push+0x1dd/0x280 net/sctp/inqueue.c:88 sctp_rcv+0x11ae/0x3100 net/sctp/input.c:243 sctp6_rcv+0x3d/0x60 net/sctp/ipv6.c:1127 The issue is triggered when sctp_auth_asoc_init_active_key() fails in sctp_sf_do_5_1C_ack() while processing an INIT_ACK. In this case, the command sequence is currently: - SCTP_CMD_PEER_INIT - SCTP_CMD_TIMER_STOP (T1_INIT) - SCTP_CMD_TIMER_START (T1_COOKIE) - SCTP_CMD_NEW_STATE (COOKIE_ECHOED) - SCTP_CMD_ASSOC_SHKEY - SCTP_CMD_GEN_COOKIE_ECHO If SCTP_CMD_ASSOC_SHKEY fails, asoc->shkey remains NULL, while asoc->peer.auth_capable and asoc->peer.peer_chunks have already been set by SCTP_CMD_PEER_INIT. This allows a DATA chunk with auth = 1 and shkey = NULL to be queued by sctp_datamsg_from_user(). Since command interpretation stops on failure, no COOKIE_ECHO should been sent via SCTP_CMD_GEN_COOKIE_ECHO. However, the T1_COOKIE timer has already been started, and it may enqueue a COOKIE_ECHO into the outqueue later. As a result, the DATA chunk can be transmitted together with the COOKIE_ECHO in sctp_outq_flush_data(), leading to the observed issue. Similar to the other places where it calls sctp_auth_asoc_init_active_key() right after sctp_process_init(), this patch moves the SCTP_CMD_ASSOC_SHKEY immediately after SCTP_CMD_PEER_INIT, before stopping T1_INIT and starting T1_COOKIE. This ensures that if shared key generation fails, authenticated DATA cannot be sent. It also allows the T1_INIT timer to retransmit INIT, giving the client another chance to process INIT_ACK and retry key setup. Fixes: 730fc3d ("[SCTP]: Implete SCTP-AUTH parameter processing") Reported-by: Zhen Chen <chenzhen126@huawei.com> Tested-by: Zhen Chen <chenzhen126@huawei.com> Signed-off-by: Xin Long <lucien.xin@gmail.com> Link: https://patch.msgid.link/44881224b375aa8853f5e19b4055a1a56d895813.1768324226.git.lucien.xin@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
borkmann
pushed a commit
that referenced
this pull request
Jan 26, 2026
Jamal Hadi Salim says: ==================== net/sched: teql: Enforce hierarchy placement GangMin Kim <km.kim1503@gmail.com> managed to create a UAF on qfq by inserting teql as a child qdisc and exploiting a qlen sync issue. teql is not intended to be used as a child qdisc. Lets enforce that rule in patch #1. Although patch #1 fixes the issue, we prevent another potential qlen exploit in qfq in patch #2 by enforcing the child's active status is not determined by inspecting the qlen. In patch #3 we add a tdc test case. ==================== Link: https://patch.msgid.link/20260114160243.913069-1-jhs@mojatatu.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
borkmann
pushed a commit
that referenced
this pull request
Jan 26, 2026
Petr Machata says:
====================
net: neighbour: Notify changes atomically
Andy Roulin and Francesco Ruggeri have apparently independently both hit an
issue with the current neighbor notification scheme. Francesco reported the
issue in [1]. In a response[2] to that report, Andy said:
neigh_update sends a rtnl notification if an update, e.g.,
nud_state change, was done but there is no guarantee of
ordering of the rtnl notifications. Consider the following
scenario:
userspace thread kernel thread
================ =============
neigh_update
write_lock_bh(n->lock)
n->nud_state = STALE
write_unlock_bh(n->lock)
neigh_notify
neigh_fill_info
read_lock_bh(n->lock)
ndm->nud_state = STALE
read_unlock_bh(n->lock)
-------------------------->
neigh:update
write_lock_bh(n->lock)
n->nud_state = REACHABLE
write_unlock_bh(n->lock)
neigh_notify
neigh_fill_info
read_lock_bh(n->lock)
ndm->nud_state = REACHABLE
read_unlock_bh(n->lock)
rtnl_nofify
RTNL REACHABLE sent
<--------
rtnl_notify
RTNL STALE sent
In this scenario, the kernel neigh is updated first to STALE and
then REACHABLE but the netlink notifications are sent out of order,
first REACHABLE and then STALE.
The solution presented in [2] was to extend the critical region to include
both the call to neigh_fill_info(), as well as rtnl_notify(). Then we have
a guarantee that whatever state was captured by neigh_fill_info(), will be
sent right away. The above scenario can thus not happen.
This is how this patchset begins: patches #1 and #2 add helper duals to
neigh_fill_info() and __neigh_notify() such that the __-prefixed function
assumes the neighbor lock is held, and the unprefixed one is a thin wrapper
that manages locking. This extends locking further than Andy's patch, but
makes for a clear code and supports the following part.
At that point, the original race is gone. But what can happen is the
following race, where the notification does not reflect the change that was
made:
userspace thread kernel thread
================ =============
neigh_update
write_lock_bh(n->lock)
n->nud_state = STALE
write_unlock_bh(n->lock)
-------------------------->
neigh:update
write_lock_bh(n->lock)
n->nud_state = REACHABLE
write_unlock_bh(n->lock)
neigh_notify
read_lock_bh(n->lock)
__neigh_fill_info
ndm->nud_state = REACHABLE
rtnl_notify
read_unlock_bh(n->lock)
RTNL REACHABLE sent
<--------
neigh_notify
read_lock_bh(n->lock)
__neigh_fill_info
ndm->nud_state = REACHABLE
rtnl_notify
read_unlock_bh(n->lock)
RTNL REACHABLE sent again
Here, even though neigh_update() made a change to STALE, it later sends a
notification with a NUD of REACHABLE. The obvious solution to fix this race
is to move the notifier to the same critical section that actually makes
the change.
Sending a notification in fact involves two things: invoking the internal
notifier chain, and sending the netlink notification. The overall approach
in this patchset is to move the netlink notification to the critical
section of the change, while keeping the internal notifier intact. Since
the motion is not obviously correct, the patchset presents the change in
series of incremental steps with discussion in commit messages. Please see
details in the patches themselves.
Reproducer
==========
To consistently reproduce, I injected an mdelay before the rtnl_notify()
call. Since only one thread should delay, a bit of instrumentation was
needed to see where the call originates. The mdelay was then only issued on
the call stack rooted in the RTNL request.
Then the general idea is to issue an "ip neigh replace" to mark a neighbor
entry as failed. In parallel to that, inject an ARP burst that validates
the entry. This is all observed with an "ip monitor neigh", where one can
see either a REACHABLE->FAILED transition, or FAILED->REACHABLE, while the
actual state at the end of the sequence is always REACHABLE.
With the patchset, only FAILED->REACHABLE is ever observed in the monitor.
Alternatives
============
Another approach to solving the issue would be to have a per-neighbor queue
of notification digests, each with a set of fields necessary for formatting
a notification. In pseudocode, a neighbor update would look something like
this:
neighbor_update:
- lock
- do update
- allocate notification digest, fill partially, mark not-committed
- unlock
- critical-section-breaking stuff (probes, ARP Q, etc.)
- lock
- fill in missing details to the digest (notably neigh->probes)
- mark the digest as committed
- while (front of the digest queue is committed)
- pop it, convert to notifier, send the notification
- unlock
This adds more complexity and would imply more changes to the code, which
is why I think the approach presented in this patchset is better. But it
would allow us to retain the overall structure of the code while giving us
accurate notifications.
A third approach would be to consider the second race not very serious and
be OK with seeing a notification that does not reflect the change that
prompted it. Then a two-patch prefix of this patchset would be all that is
needed.
[1]: https://lore.kernel.org/20220606230107.D70B55EC0B30@us226.sjc.aristanetworks.com
[2]: https://lore.kernel.org/ed6768c1-80b8-aee2-e545-b51661d49336@nvidia.com
====================
Link: https://patch.msgid.link/cover.1769012464.git.petrm@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
gentoo-root
pushed a commit
that referenced
this pull request
Feb 2, 2026
…itives The "valid" readout delay between the two reads of the watchdog is larger than the valid delta between the resulting watchdog and clocksource intervals, which results in false positive watchdog results. Assume TSC is the clocksource and HPET is the watchdog and both have a uncertainty margin of 250us (default). The watchdog readout does: 1) wdnow = read(HPET); 2) csnow = read(TSC); 3) wdend = read(HPET); The valid window for the delta between #1 and #3 is calculated by the uncertainty margins of the watchdog and the clocksource: m = 2 * watchdog.uncertainty_margin + cs.uncertainty margin; which results in 750us for the TSC/HPET case. The actual interval comparison uses a smaller margin: m = watchdog.uncertainty_margin + cs.uncertainty margin; which results in 500us for the TSC/HPET case. That means the following scenario will trigger the watchdog: Watchdog cycle N: 1) wdnow[N] = read(HPET); 2) csnow[N] = read(TSC); 3) wdend[N] = read(HPET); Assume the delay between #1 and #2 is 100us and the delay between #1 and Watchdog cycle N + 1: 4) wdnow[N + 1] = read(HPET); 5) csnow[N + 1] = read(TSC); 6) wdend[N + 1] = read(HPET); If the delay between #4 and #6 is within the 750us margin then any delay between #4 and #5 which is larger than 600us will fail the interval check and mark the TSC unstable because the intervals are calculated against the previous value: wd_int = wdnow[N + 1] - wdnow[N]; cs_int = csnow[N + 1] - csnow[N]; Putting the above delays in place this results in: cs_int = (wdnow[N + 1] + 610us) - (wdnow[N] + 100us); -> cs_int = wd_int + 510us; which is obviously larger than the allowed 500us margin and results in marking TSC unstable. Fix this by using the same margin as the interval comparison. If the delay between two watchdog reads is larger than that, then the readout was either disturbed by interconnect congestion, NMIs or SMIs. Fixes: 4ac1dd3 ("clocksource: Set cs_watchdog_read() checks based on .uncertainty_margin") Reported-by: Daniel J Blueman <daniel@quora.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Paul E. McKenney <paulmck@kernel.org> Link: https://lore.kernel.org/lkml/20250602223251.496591-1-daniel@quora.org/ Link: https://patch.msgid.link/87bjjxc9dq.ffs@tglx
gentoo-root
pushed a commit
that referenced
this pull request
Feb 2, 2026
When one iio device is a consumer of another, it is possible that
the ->info_exist_lock of both ends up being taken when reading the
value of the consumer device.
Since they currently belong to the same lockdep class (being
initialized in a single location with mutex_init()), that results in a
lockdep warning
CPU0
----
lock(&iio_dev_opaque->info_exist_lock);
lock(&iio_dev_opaque->info_exist_lock);
*** DEADLOCK ***
May be due to missing lock nesting notation
4 locks held by sensors/414:
#0: c31fd6dc (&p->lock){+.+.}-{3:3}, at: seq_read_iter+0x44/0x4e4
#1: c4f5a1c4 (&of->mutex){+.+.}-{3:3}, at: kernfs_seq_start+0x1c/0xac
#2: c2827548 (kn->active#34){.+.+}-{0:0}, at: kernfs_seq_start+0x30/0xac
#3: c1dd2b6 (&iio_dev_opaque->info_exist_lock){+.+.}-{3:3}, at: iio_read_channel_processed_scale+0x24/0xd8
stack backtrace:
CPU: 0 UID: 0 PID: 414 Comm: sensors Not tainted 6.17.11 #5 NONE
Hardware name: Generic AM33XX (Flattened Device Tree)
Call trace:
unwind_backtrace from show_stack+0x10/0x14
show_stack from dump_stack_lvl+0x44/0x60
dump_stack_lvl from print_deadlock_bug+0x2b8/0x334
print_deadlock_bug from __lock_acquire+0x13a4/0x2ab0
__lock_acquire from lock_acquire+0xd0/0x2c0
lock_acquire from __mutex_lock+0xa0/0xe8c
__mutex_lock from mutex_lock_nested+0x1c/0x24
mutex_lock_nested from iio_read_channel_raw+0x20/0x6c
iio_read_channel_raw from rescale_read_raw+0x128/0x1c4
rescale_read_raw from iio_channel_read+0xe4/0xf4
iio_channel_read from iio_read_channel_processed_scale+0x6c/0xd8
iio_read_channel_processed_scale from iio_hwmon_read_val+0x68/0xbc
iio_hwmon_read_val from dev_attr_show+0x18/0x48
dev_attr_show from sysfs_kf_seq_show+0x80/0x110
sysfs_kf_seq_show from seq_read_iter+0xdc/0x4e4
seq_read_iter from vfs_read+0x238/0x2e4
vfs_read from ksys_read+0x6c/0xec
ksys_read from ret_fast_syscall+0x0/0x1c
Just as the mlock_key already has its own lockdep class, add a
lock_class_key for the info_exist mutex.
Note that this has in theory been a problem since before IIO first
left staging, but it only occurs when a chain of consumers is in use
and that is not often done.
Fixes: ac917a8 ("staging:iio:core set the iio_dev.info pointer to null on unregister under lock.")
Signed-off-by: Rasmus Villemoes <ravi@prevas.dk>
Reviewed-by: Peter Rosin <peda@axentia.se>
Cc: <stable@vger.kernel.org>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
gentoo-root
pushed a commit
that referenced
this pull request
Feb 2, 2026
Since the commit 25c6a5a ("net: phy: micrel: Dynamically control external clock of KSZ PHY"), the clock of Micrel PHY has been enabled by phy_driver::resume() and disabled by phy_driver::suspend(). However, devm_clk_get_optional_enabled() is used in kszphy_probe(), so the clock will automatically be disabled when the device is unbound from the bus. Therefore, this could cause the clock to be disabled twice, resulting in clk driver warnings. For example, this issue can be reproduced on i.MX6ULL platform, and we can see the following logs when removing the FEC MAC drivers. $ echo 2188000.ethernet > /sys/bus/platform/drivers/fec/unbind $ echo 20b4000.ethernet > /sys/bus/platform/drivers/fec/unbind [ 109.758207] ------------[ cut here ]------------ [ 109.758240] WARNING: drivers/clk/clk.c:1188 at clk_core_disable+0xb4/0xd0, CPU#0: sh/639 [ 109.771011] enet2_ref already disabled [ 109.793359] Call trace: [ 109.822006] clk_core_disable from clk_disable+0x28/0x34 [ 109.827340] clk_disable from clk_disable_unprepare+0xc/0x18 [ 109.833029] clk_disable_unprepare from devm_clk_release+0x1c/0x28 [ 109.839241] devm_clk_release from devres_release_all+0x98/0x100 [ 109.845278] devres_release_all from device_unbind_cleanup+0xc/0x70 [ 109.851571] device_unbind_cleanup from device_release_driver_internal+0x1a4/0x1f4 [ 109.859170] device_release_driver_internal from bus_remove_device+0xbc/0xe4 [ 109.866243] bus_remove_device from device_del+0x140/0x458 [ 109.871757] device_del from phy_mdio_device_remove+0xc/0x24 [ 109.877452] phy_mdio_device_remove from mdiobus_unregister+0x40/0xac [ 109.883918] mdiobus_unregister from fec_enet_mii_remove+0x40/0x78 [ 109.890125] fec_enet_mii_remove from fec_drv_remove+0x4c/0x158 [ 109.896076] fec_drv_remove from device_release_driver_internal+0x17c/0x1f4 [ 109.962748] WARNING: drivers/clk/clk.c:1047 at clk_core_unprepare+0xfc/0x13c, CPU#0: sh/639 [ 109.975805] enet2_ref already unprepared [ 110.002866] Call trace: [ 110.031758] clk_core_unprepare from clk_unprepare+0x24/0x2c [ 110.037440] clk_unprepare from devm_clk_release+0x1c/0x28 [ 110.042957] devm_clk_release from devres_release_all+0x98/0x100 [ 110.048989] devres_release_all from device_unbind_cleanup+0xc/0x70 [ 110.055280] device_unbind_cleanup from device_release_driver_internal+0x1a4/0x1f4 [ 110.062877] device_release_driver_internal from bus_remove_device+0xbc/0xe4 [ 110.069950] bus_remove_device from device_del+0x140/0x458 [ 110.075469] device_del from phy_mdio_device_remove+0xc/0x24 [ 110.081165] phy_mdio_device_remove from mdiobus_unregister+0x40/0xac [ 110.087632] mdiobus_unregister from fec_enet_mii_remove+0x40/0x78 [ 110.093836] fec_enet_mii_remove from fec_drv_remove+0x4c/0x158 [ 110.099782] fec_drv_remove from device_release_driver_internal+0x17c/0x1f4 After analyzing the process of removing the FEC driver, as shown below, it can be seen that the clock was disabled twice by the PHY driver. fec_drv_remove() --> fec_enet_close() --> phy_stop() --> phy_suspend() --> kszphy_suspend() #1 The clock is disabled --> fec_enet_mii_remove() --> mdiobus_unregister() --> phy_mdio_device_remove() --> device_del() --> devm_clk_release() #2 The clock is disabled again Therefore, devm_clk_get_optional() is used to fix the above issue. And to avoid the issue mentioned by the commit 9853294 ("net: phy: micrel: use devm_clk_get_optional_enabled for the rmii-ref clock"), the clock is enabled by clk_prepare_enable() to get the correct clock rate. Fixes: 25c6a5a ("net: phy: micrel: Dynamically control external clock of KSZ PHY") Signed-off-by: Wei Fang <wei.fang@nxp.com> Reviewed-by: Maxime Chevallier <maxime.chevallier@bootlin.com> Link: https://patch.msgid.link/20260126081544.983517-1-wei.fang@nxp.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
gentoo-root
pushed a commit
that referenced
this pull request
Feb 2, 2026
…ernel/git/ath/ath Jeff Johnson says: ================== ath.git patches for v6.20 (#2) Highlights for some specific drivers include: ath11k: Add support for Channel Frequency Response measurement. ath12k: Add support for the QCC2072 chipset. And of course there is the usual set of cleanups and bug fixes across the entire family of "ath" drivers. ================== Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.