forked from mourner/flatbush
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.js
373 lines (305 loc) · 12.8 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import FlatQueue from 'flatqueue';
const ARRAY_TYPES = [
Int8Array, Uint8Array, Uint8ClampedArray, Int16Array, Uint16Array,
Int32Array, Uint32Array, Float32Array, Float64Array
];
const VERSION = 3; // serialized format version
export default class Flatbush {
static from(data) {
if (!(data instanceof ArrayBuffer)) {
throw new Error('Data must be an instance of ArrayBuffer.');
}
const [magic, versionAndType] = new Uint8Array(data, 0, 2);
if (magic !== 0xfb) {
throw new Error('Data does not appear to be in a Flatbush format.');
}
if (versionAndType >> 4 !== VERSION) {
throw new Error(`Got v${versionAndType >> 4} data when expected v${VERSION}.`);
}
const [nodeSize] = new Uint16Array(data, 2, 1);
const [numItems] = new Uint32Array(data, 4, 1);
return new Flatbush(numItems, nodeSize, ARRAY_TYPES[versionAndType & 0x0f], data);
}
constructor(numItems, nodeSize = 16, ArrayType = Float64Array, data) {
if (numItems === undefined) throw new Error('Missing required argument: numItems.');
if (isNaN(numItems) || numItems <= 0) throw new Error(`Unpexpected numItems value: ${numItems}.`);
this.numItems = +numItems;
this.nodeSize = Math.min(Math.max(+nodeSize, 2), 65535);
// calculate the total number of nodes in the R-tree to allocate space for
// and the index of each tree level (used in search later)
let n = numItems;
let numNodes = n;
this._levelBounds = [n * 4];
do {
n = Math.ceil(n / this.nodeSize);
numNodes += n;
this._levelBounds.push(numNodes * 4);
} while (n !== 1);
this.ArrayType = ArrayType || Float64Array;
this.IndexArrayType = numNodes < 16384 ? Uint16Array : Uint32Array;
const arrayTypeIndex = ARRAY_TYPES.indexOf(this.ArrayType);
const nodesByteSize = numNodes * 4 * this.ArrayType.BYTES_PER_ELEMENT;
if (arrayTypeIndex < 0) {
throw new Error(`Unexpected typed array class: ${ArrayType}.`);
}
if (data && (data instanceof ArrayBuffer)) {
this.data = data;
this._boxes = new this.ArrayType(this.data, 8, numNodes * 4);
this._indices = new this.IndexArrayType(this.data, 8 + nodesByteSize, numNodes);
this._pos = numNodes * 4;
this.minX = this._boxes[this._pos - 4];
this.minY = this._boxes[this._pos - 3];
this.maxX = this._boxes[this._pos - 2];
this.maxY = this._boxes[this._pos - 1];
} else {
this.data = new ArrayBuffer(8 + nodesByteSize + numNodes * this.IndexArrayType.BYTES_PER_ELEMENT);
this._boxes = new this.ArrayType(this.data, 8, numNodes * 4);
this._indices = new this.IndexArrayType(this.data, 8 + nodesByteSize, numNodes);
this._pos = 0;
this.minX = Infinity;
this.minY = Infinity;
this.maxX = -Infinity;
this.maxY = -Infinity;
new Uint8Array(this.data, 0, 2).set([0xfb, (VERSION << 4) + arrayTypeIndex]);
new Uint16Array(this.data, 2, 1)[0] = nodeSize;
new Uint32Array(this.data, 4, 1)[0] = numItems;
}
// a priority queue for k-nearest-neighbors queries
this._queue = new FlatQueue();
}
add(minX, minY, maxX, maxY) {
const index = this._pos >> 2;
this._indices[index] = index;
this._boxes[this._pos++] = minX;
this._boxes[this._pos++] = minY;
this._boxes[this._pos++] = maxX;
this._boxes[this._pos++] = maxY;
if (minX < this.minX) this.minX = minX;
if (minY < this.minY) this.minY = minY;
if (maxX > this.maxX) this.maxX = maxX;
if (maxY > this.maxY) this.maxY = maxY;
return index;
}
finish() {
if (this._pos >> 2 !== this.numItems) {
throw new Error(`Added ${this._pos >> 2} items when expected ${this.numItems}.`);
}
if (this.numItems <= this.nodeSize) {
// only one node, skip sorting and just fill the root box
this._boxes[this._pos++] = this.minX;
this._boxes[this._pos++] = this.minY;
this._boxes[this._pos++] = this.maxX;
this._boxes[this._pos++] = this.maxY;
return;
}
const width = (this.maxX - this.minX) || 1;
const height = (this.maxY - this.minY) || 1;
const hilbertValues = new Uint32Array(this.numItems);
const hilbertMax = (1 << 16) - 1;
// map item centers into Hilbert coordinate space and calculate Hilbert values
for (let i = 0; i < this.numItems; i++) {
let pos = 4 * i;
const minX = this._boxes[pos++];
const minY = this._boxes[pos++];
const maxX = this._boxes[pos++];
const maxY = this._boxes[pos++];
const x = Math.floor(hilbertMax * ((minX + maxX) / 2 - this.minX) / width);
const y = Math.floor(hilbertMax * ((minY + maxY) / 2 - this.minY) / height);
hilbertValues[i] = hilbert(x, y);
}
// sort items by their Hilbert value (for packing later)
sort(hilbertValues, this._boxes, this._indices, 0, this.numItems - 1, this.nodeSize);
// generate nodes at each tree level, bottom-up
for (let i = 0, pos = 0; i < this._levelBounds.length - 1; i++) {
const end = this._levelBounds[i];
// generate a parent node for each block of consecutive <nodeSize> nodes
while (pos < end) {
const nodeIndex = pos;
// calculate bbox for the new node
let nodeMinX = Infinity;
let nodeMinY = Infinity;
let nodeMaxX = -Infinity;
let nodeMaxY = -Infinity;
for (let i = 0; i < this.nodeSize && pos < end; i++) {
nodeMinX = Math.min(nodeMinX, this._boxes[pos++]);
nodeMinY = Math.min(nodeMinY, this._boxes[pos++]);
nodeMaxX = Math.max(nodeMaxX, this._boxes[pos++]);
nodeMaxY = Math.max(nodeMaxY, this._boxes[pos++]);
}
// add the new node to the tree data
this._indices[this._pos >> 2] = nodeIndex;
this._boxes[this._pos++] = nodeMinX;
this._boxes[this._pos++] = nodeMinY;
this._boxes[this._pos++] = nodeMaxX;
this._boxes[this._pos++] = nodeMaxY;
}
}
}
search(minX, minY, maxX, maxY, filterFn) {
if (this._pos !== this._boxes.length) {
throw new Error('Data not yet indexed - call index.finish().');
}
let nodeIndex = this._boxes.length - 4;
const queue = [];
const results = [];
while (nodeIndex !== undefined) {
// find the end index of the node
const end = Math.min(nodeIndex + this.nodeSize * 4, upperBound(nodeIndex, this._levelBounds));
// search through child nodes
for (let pos = nodeIndex; pos < end; pos += 4) {
const index = this._indices[pos >> 2] | 0;
// check if node bbox intersects with query bbox
if (maxX < this._boxes[pos]) continue; // maxX < nodeMinX
if (maxY < this._boxes[pos + 1]) continue; // maxY < nodeMinY
if (minX > this._boxes[pos + 2]) continue; // minX > nodeMaxX
if (minY > this._boxes[pos + 3]) continue; // minY > nodeMaxY
if (nodeIndex < this.numItems * 4) {
if (filterFn === undefined || filterFn(index)) {
results.push(index); // leaf item
}
} else {
queue.push(index); // node; add it to the search queue
}
}
nodeIndex = queue.pop();
}
return results;
}
neighbors(x, y, maxResults = Infinity, maxDistance = Infinity, filterFn) {
if (this._pos !== this._boxes.length) {
throw new Error('Data not yet indexed - call index.finish().');
}
let nodeIndex = this._boxes.length - 4;
const q = this._queue;
const results = [];
const maxDistSquared = maxDistance * maxDistance;
while (nodeIndex !== undefined) {
// find the end index of the node
const end = Math.min(nodeIndex + this.nodeSize * 4, upperBound(nodeIndex, this._levelBounds));
// add child nodes to the queue
for (let pos = nodeIndex; pos < end; pos += 4) {
const index = this._indices[pos >> 2] | 0;
const dx = axisDist(x, this._boxes[pos], this._boxes[pos + 2]);
const dy = axisDist(y, this._boxes[pos + 1], this._boxes[pos + 3]);
const dist = dx * dx + dy * dy;
if (nodeIndex < this.numItems * 4) { // leaf node
if (filterFn === undefined || filterFn(index)) {
// put an odd index if it's an item rather than a node, to recognize later
q.push((index << 1) + 1, dist);
}
} else {
q.push(index << 1, dist);
}
}
// pop items from the queue
while (q.length && (q.peek() & 1)) {
const dist = q.peekValue();
if (dist > maxDistSquared) {
q.clear();
return results;
}
results.push(q.pop() >> 1);
if (results.length === maxResults) {
q.clear();
return results;
}
}
nodeIndex = q.pop() >> 1;
}
q.clear();
return results;
}
}
function axisDist(k, min, max) {
return k < min ? min - k : k <= max ? 0 : k - max;
}
// binary search for the first value in the array bigger than the given
function upperBound(value, arr) {
let i = 0;
let j = arr.length - 1;
while (i < j) {
const m = (i + j) >> 1;
if (arr[m] > value) {
j = m;
} else {
i = m + 1;
}
}
return arr[i];
}
// custom quicksort that partially sorts bbox data alongside the hilbert values
function sort(values, boxes, indices, left, right, nodeSize) {
if (Math.floor(left / nodeSize) >= Math.floor(right / nodeSize)) return;
const pivot = values[(left + right) >> 1];
let i = left - 1;
let j = right + 1;
while (true) {
do i++; while (values[i] < pivot);
do j--; while (values[j] > pivot);
if (i >= j) break;
swap(values, boxes, indices, i, j);
}
sort(values, boxes, indices, left, j, nodeSize);
sort(values, boxes, indices, j + 1, right, nodeSize);
}
// swap two values and two corresponding boxes
function swap(values, boxes, indices, i, j) {
const temp = values[i];
values[i] = values[j];
values[j] = temp;
const k = 4 * i;
const m = 4 * j;
const a = boxes[k];
const b = boxes[k + 1];
const c = boxes[k + 2];
const d = boxes[k + 3];
boxes[k] = boxes[m];
boxes[k + 1] = boxes[m + 1];
boxes[k + 2] = boxes[m + 2];
boxes[k + 3] = boxes[m + 3];
boxes[m] = a;
boxes[m + 1] = b;
boxes[m + 2] = c;
boxes[m + 3] = d;
const e = indices[i];
indices[i] = indices[j];
indices[j] = e;
}
// Fast Hilbert curve algorithm by http://threadlocalmutex.com/
// Ported from C++ https://github.com/rawrunprotected/hilbert_curves (public domain)
function hilbert(x, y) {
let a = x ^ y;
let b = 0xFFFF ^ a;
let c = 0xFFFF ^ (x | y);
let d = x & (y ^ 0xFFFF);
let A = a | (b >> 1);
let B = (a >> 1) ^ a;
let C = ((c >> 1) ^ (b & (d >> 1))) ^ c;
let D = ((a & (c >> 1)) ^ (d >> 1)) ^ d;
a = A; b = B; c = C; d = D;
A = ((a & (a >> 2)) ^ (b & (b >> 2)));
B = ((a & (b >> 2)) ^ (b & ((a ^ b) >> 2)));
C ^= ((a & (c >> 2)) ^ (b & (d >> 2)));
D ^= ((b & (c >> 2)) ^ ((a ^ b) & (d >> 2)));
a = A; b = B; c = C; d = D;
A = ((a & (a >> 4)) ^ (b & (b >> 4)));
B = ((a & (b >> 4)) ^ (b & ((a ^ b) >> 4)));
C ^= ((a & (c >> 4)) ^ (b & (d >> 4)));
D ^= ((b & (c >> 4)) ^ ((a ^ b) & (d >> 4)));
a = A; b = B; c = C; d = D;
C ^= ((a & (c >> 8)) ^ (b & (d >> 8)));
D ^= ((b & (c >> 8)) ^ ((a ^ b) & (d >> 8)));
a = C ^ (C >> 1);
b = D ^ (D >> 1);
let i0 = x ^ y;
let i1 = b | (0xFFFF ^ (i0 | a));
i0 = (i0 | (i0 << 8)) & 0x00FF00FF;
i0 = (i0 | (i0 << 4)) & 0x0F0F0F0F;
i0 = (i0 | (i0 << 2)) & 0x33333333;
i0 = (i0 | (i0 << 1)) & 0x55555555;
i1 = (i1 | (i1 << 8)) & 0x00FF00FF;
i1 = (i1 | (i1 << 4)) & 0x0F0F0F0F;
i1 = (i1 | (i1 << 2)) & 0x33333333;
i1 = (i1 | (i1 << 1)) & 0x55555555;
return ((i1 << 1) | i0) >>> 0;
}