-
Notifications
You must be signed in to change notification settings - Fork 5
/
recsSS.m
162 lines (142 loc) · 5.55 KB
/
recsSS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
function [s,x,z,exitflag] = recsSS(model,s,x,options)
% RECSSS Solves for the deterministic steady state in rational expectations models
%
% RECSSS cannot find the deterministic steady state of a functional
% equation problem since, in this case, the steady state depends on
% the model solution.
%
% S = RECSSS(MODEL) tries to find the non-stochastic steady state of the model
% defined in the object MODEL. This function call uses as first guess for
% steady-state state and response variable the values available in the
% properties sss and xss of the object MODEL. RECSSS returns the value of the
% state variables at steady state. MODEL is an object created by recsmodel.
%
% S = RECSSS(MODEL,S) uses the vector S as first guess for steady-state state
% variables.
%
% S = RECSSS(MODEL,S,X) uses the vector X as first guess for steady-state response
% variables.
%
% S = RECSSS(MODEL,S,X,OPTIONS) solves the problem with the parameters
% defined by the structure OPTIONS. The fields of the structure are
% display : 1 to display the steady state if found (default: 1)
% eqsolver : 'fsolve', 'lmmcp' (default), 'ncpsolve' or 'path'
% eqsolveroptions : options structure to be passed to eqsolver
%
% [S,X] = RECSSS(MODEL,...) returns the value of the response
% variables at steady state.
%
% [S,X,Z] = RECSSS(MODEL,...) returns the value of the
% expectations variable at steady state.
%
% [S,X,Z,EXITFLAG] = RECSSS(MODEL,...) returns EXITFLAG,
% which describes the exit conditions. Possible values are
% 1 : RECSSS converges to the deterministic steady state
% 0 : Failure to converge
% Copyright (C) 2011-2018 Christophe Gouel
% Licensed under the Expat license, see LICENSE.txt
%% Initialization
if nargin<2 || isempty(s), s = model.sss; end
if nargin<3 || isempty(x), [~,x] = model.xss; end
defaultopt = struct(...
'display' , 1 ,...
'eqsolver' , 'lmmcp' ,...
'eqsolveroptions' , struct('Diagnostics' , 'off',...
'DerivativeCheck', 'off',...
'Jacobian' , 'on') ,...
'functional' , 0);
if nargin<4
options = defaultopt;
else
if isfield(options,'eqsolveroptions')
options.eqsolveroptions = catstruct(defaultopt.eqsolveroptions,options.eqsolveroptions);
end
options = catstruct(defaultopt,options);
end
if options.functional
error(['This program cannot solve for the deterministic steady state of a ' ...
'functional equation problem']);
end
eqsolver = lower(options.eqsolver);
eqsolveroptions = options.eqsolveroptions;
params = model.params;
e = model.shocks.w'*model.shocks.e;
[d,m] = model.dim{1:2};
fp = model.functions.fp;
gp = model.functions.gp;
hp = model.functions.hp;
%% Solve for the deterministic steady state
nx = model.infos.nxvarbounds;
w = zeros(nx(1),1);
v = zeros(nx(2),1);
X = [s(:); x(:); w; v];
[LBx,UBx] = model.functions.bp(s,params);
LB = [-inf(size(s(:))); LBx(:)];
UB = [+inf(size(s(:))); UBx(:)];
[X,~,exitflag] = runeqsolver(@SSResidual,X,LB,UB,eqsolver,eqsolveroptions,...
fp,gp,hp,params,e,d,m,nx);
if exitflag~=1
warning('RECS:SSNotFound','Failure to find a deterministic steady state');
end
%% Prepare outputs
s0 = s;
x0 = x;
s = X(1:d)';
x = X(d+1:d+m)';
z = model.functions.h(s,x,e,s,x,params);
%% Display steady state
if exitflag==1 && options.display==1
deltass = max(abs([s x]-[s0 x0]));
if deltass<sqrt(eps)
fprintf(1,'Deterministic steady state (equal to first guess)\n')
else
fprintf(1,['Deterministic steady state (different from first guess, ' ...
'max(|delta|)=%g)\n'],deltass)
end
if exist('table','file')
fprintf(1,' State variables:\n')
disp(array2table(s,'VariableNames',model.symbols.states))
fprintf(1,' Response variables:\n')
disp(array2table(x,'VariableNames',model.symbols.controls))
fprintf(1,' Expectations variables:\n')
disp(array2table(z,'VariableNames',model.symbols.expectations))
else
fprintf(1,' State variables:\n\t\t')
fprintf(1,'%0.4g\t',s)
fprintf(1,'\n\n Response variables:\n\t\t')
fprintf(1,'%0.4g\t',x)
fprintf(1,'\n\n Expectations variables:\n\t\t')
fprintf(1,'%0.4g\t',z)
fprintf(1,'\n\n')
end
end
function [F,J] = SSResidual(X,fp,gp,hp,params,e,d,m,nx)
%% SSRESIDUAL evaluates the equations and Jacobians of the steady-state finding problem
ss = X(1:d)';
xx = X(d+1:d+m)';
ww = X(d+m+1:d+m+nx(1))';
vv = X(d+m+nx(1)+1:d+m+nx(1)+nx(2))';
M = m+nx(1)+nx(2);
if nargout==2
%% With Jacobian calculation
[zz,hs,hx,~,hsnext,hxnext] = hp(ss,xx,e,ss,xx,params,[1 1 1 0 1 1]);
[f,fs,fx,fz] = fp(ss,xx,ww,vv,zz,params,ones(4,1));
[g,gs,gx] = gp(ss,xx,e,params,[1 1 1 0]);
fz = permute(fz,[2 3 1]);
J = zeros(d+M,d+M);
% With respect to s
J(1:d ,1:d) = eye(d)-permute(gs,[2 3 1]);
J(d+1:d+M ,1:d) = permute(fs,[2 3 1])+fz*permute(hs+hsnext,[2 3 1]);
% With respect to X
J(1:d ,d+1:d+M) = -permute(gx,[2 3 1]);
J(d+1:d+M ,d+1:d+M) = permute(fx,[2 3 1])+fz*permute(hx+hxnext,[2 3 1]);
% Aggregation into a sparse matrix
J = sparse(J);
else
%% Without Jacobian calculation
zz = hp(ss,xx,e,ss,xx,params,[1 0 0 0 0 0]);
f = fp(ss,xx,ww,vv,zz,params,[1 0 0 0]);
g = gp(ss,xx,e,params,[1 0 0 0]);
end
F = [ss-g f]';
return