We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
anyone could tell me difference of these ConvType? i.e. ME.RegionType.HYPERCUBE,...,
if i want to build a Spatio Module, which ConvType should i use?
i dont know why these are two kind of ConvType in MinkUNet32?
MinkUNet32?
Res16UNet34( (conv0p1s1): MinkowskiConvolution(in=6, out=32, region_type=RegionType.HYPERCUBE, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (bn0): MinkowskiBatchNorm(32, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) (conv1p1s2): MinkowskiConvolution(in=32, out=32, region_type=RegionType.HYPERCUBE, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1]) (bn1): MinkowskiBatchNorm(32, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) (block1): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=32, out=32, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=32, out=32, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=32, out=32, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=32, out=32, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (conv2p2s2): MinkowskiConvolution(in=32, out=32, region_type=RegionType.HYPERCUBE, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1]) (bn2): MinkowskiBatchNorm(32, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) (block2): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=32, out=64, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=64, out=64, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=32, out=64, region_type=RegionType.HYPERCUBE, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=64, out=64, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=64, out=64, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (2): BasicBlock( (conv1): MinkowskiConvolution(in=64, out=64, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=64, out=64, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (conv3p4s2): MinkowskiConvolution(in=64, out=64, region_type=RegionType.HYPERCUBE, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1]) (bn3): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) (block3): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=64, out=128, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=64, out=128, region_type=RegionType.HYPERCUBE, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (2): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (3): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (conv4p8s2): MinkowskiConvolution(in=128, out=128, region_type=RegionType.HYPERCUBE, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1]) (bn4): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) (block4): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=128, out=256, region_type=RegionType.HYPERCUBE, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (2): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (3): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (4): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (5): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (convtr4p16s2): MinkowskiConvolutionTranspose(in=256, out=256, region_type=RegionType.HYPERCUBE, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1]) (bntr4): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) (block5): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=384, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=384, out=256, region_type=RegionType.HYPERCUBE, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (convtr5p8s2): MinkowskiConvolutionTranspose(in=256, out=256, region_type=RegionType.HYPERCUBE, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1]) (bntr5): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) (block6): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=320, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=320, out=256, region_type=RegionType.HYPERCUBE, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (convtr6p4s2): MinkowskiConvolutionTranspose(in=256, out=256, region_type=RegionType.HYPERCUBE, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1]) (bntr6): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) (block7): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=288, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=288, out=256, region_type=RegionType.HYPERCUBE, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (convtr7p2s2): MinkowskiConvolutionTranspose(in=256, out=256, region_type=RegionType.HYPERCUBE, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1]) (bntr7): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) (block8): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=288, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=288, out=256, region_type=RegionType.HYPERCUBE, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.02, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, region_type=RegionType.HYBRID, kernel_volume=27, stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (final): MinkowskiConvolution(in=256, out=13, region_type=RegionType.HYPERCUBE, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (relu): MinkowskiReLU() )
SpatioTemporalSegmentation/models/modules/common.py
Line 27 in 4afee29
The text was updated successfully, but these errors were encountered:
No branches or pull requests
anyone could tell me difference of these ConvType?
i.e. ME.RegionType.HYPERCUBE,...,
if i want to build a Spatio Module, which ConvType should i use?
i dont know why these are two kind of ConvType in
MinkUNet32?
SpatioTemporalSegmentation/models/modules/common.py
Line 27 in 4afee29
The text was updated successfully, but these errors were encountered: