|
| 1 | +#include <torch/torch.h> |
| 2 | + |
| 3 | +// CUDA forward declarations |
| 4 | +int ChamferDistanceKernelLauncher( |
| 5 | + const int b, const int n, |
| 6 | + const float* xyz, |
| 7 | + const int m, |
| 8 | + const float* xyz2, |
| 9 | + float* result, |
| 10 | + int* result_i, |
| 11 | + float* result2, |
| 12 | + int* result2_i); |
| 13 | + |
| 14 | +int ChamferDistanceGradKernelLauncher( |
| 15 | + const int b, const int n, |
| 16 | + const float* xyz1, |
| 17 | + const int m, |
| 18 | + const float* xyz2, |
| 19 | + const float* grad_dist1, |
| 20 | + const int* idx1, |
| 21 | + const float* grad_dist2, |
| 22 | + const int* idx2, |
| 23 | + float* grad_xyz1, |
| 24 | + float* grad_xyz2); |
| 25 | + |
| 26 | + |
| 27 | +void chamfer_distance_forward_cuda( |
| 28 | + const at::Tensor xyz1, |
| 29 | + const at::Tensor xyz2, |
| 30 | + const at::Tensor dist1, |
| 31 | + const at::Tensor dist2, |
| 32 | + const at::Tensor idx1, |
| 33 | + const at::Tensor idx2) |
| 34 | +{ |
| 35 | + ChamferDistanceKernelLauncher(xyz1.size(0), xyz1.size(1), xyz1.data<float>(), |
| 36 | + xyz2.size(1), xyz2.data<float>(), |
| 37 | + dist1.data<float>(), idx1.data<int>(), |
| 38 | + dist2.data<float>(), idx2.data<int>()); |
| 39 | +} |
| 40 | + |
| 41 | +void chamfer_distance_backward_cuda( |
| 42 | + const at::Tensor xyz1, |
| 43 | + const at::Tensor xyz2, |
| 44 | + at::Tensor gradxyz1, |
| 45 | + at::Tensor gradxyz2, |
| 46 | + at::Tensor graddist1, |
| 47 | + at::Tensor graddist2, |
| 48 | + at::Tensor idx1, |
| 49 | + at::Tensor idx2) |
| 50 | +{ |
| 51 | + ChamferDistanceGradKernelLauncher(xyz1.size(0), xyz1.size(1), xyz1.data<float>(), |
| 52 | + xyz2.size(1), xyz2.data<float>(), |
| 53 | + graddist1.data<float>(), idx1.data<int>(), |
| 54 | + graddist2.data<float>(), idx2.data<int>(), |
| 55 | + gradxyz1.data<float>(), gradxyz2.data<float>()); |
| 56 | +} |
| 57 | + |
| 58 | + |
| 59 | +void nnsearch( |
| 60 | + const int b, const int n, const int m, |
| 61 | + const float* xyz1, |
| 62 | + const float* xyz2, |
| 63 | + float* dist, |
| 64 | + int* idx) |
| 65 | +{ |
| 66 | + for (int i = 0; i < b; i++) { |
| 67 | + for (int j = 0; j < n; j++) { |
| 68 | + const float x1 = xyz1[(i*n+j)*3+0]; |
| 69 | + const float y1 = xyz1[(i*n+j)*3+1]; |
| 70 | + const float z1 = xyz1[(i*n+j)*3+2]; |
| 71 | + double best = 0; |
| 72 | + int besti = 0; |
| 73 | + for (int k = 0; k < m; k++) { |
| 74 | + const float x2 = xyz2[(i*m+k)*3+0] - x1; |
| 75 | + const float y2 = xyz2[(i*m+k)*3+1] - y1; |
| 76 | + const float z2 = xyz2[(i*m+k)*3+2] - z1; |
| 77 | + const double d=x2*x2+y2*y2+z2*z2; |
| 78 | + if (k==0 || d < best){ |
| 79 | + best = d; |
| 80 | + besti = k; |
| 81 | + } |
| 82 | + } |
| 83 | + dist[i*n+j] = best; |
| 84 | + idx[i*n+j] = besti; |
| 85 | + } |
| 86 | + } |
| 87 | +} |
| 88 | + |
| 89 | + |
| 90 | +void chamfer_distance_forward( |
| 91 | + const at::Tensor xyz1, |
| 92 | + const at::Tensor xyz2, |
| 93 | + const at::Tensor dist1, |
| 94 | + const at::Tensor dist2, |
| 95 | + const at::Tensor idx1, |
| 96 | + const at::Tensor idx2) |
| 97 | +{ |
| 98 | + const int batchsize = xyz1.size(0); |
| 99 | + const int n = xyz1.size(1); |
| 100 | + const int m = xyz2.size(1); |
| 101 | + |
| 102 | + const float* xyz1_data = xyz1.data<float>(); |
| 103 | + const float* xyz2_data = xyz2.data<float>(); |
| 104 | + float* dist1_data = dist1.data<float>(); |
| 105 | + float* dist2_data = dist2.data<float>(); |
| 106 | + int* idx1_data = idx1.data<int>(); |
| 107 | + int* idx2_data = idx2.data<int>(); |
| 108 | + |
| 109 | + nnsearch(batchsize, n, m, xyz1_data, xyz2_data, dist1_data, idx1_data); |
| 110 | + nnsearch(batchsize, m, n, xyz2_data, xyz1_data, dist2_data, idx2_data); |
| 111 | +} |
| 112 | + |
| 113 | + |
| 114 | +void chamfer_distance_backward( |
| 115 | + const at::Tensor xyz1, |
| 116 | + const at::Tensor xyz2, |
| 117 | + at::Tensor gradxyz1, |
| 118 | + at::Tensor gradxyz2, |
| 119 | + at::Tensor graddist1, |
| 120 | + at::Tensor graddist2, |
| 121 | + at::Tensor idx1, |
| 122 | + at::Tensor idx2) |
| 123 | +{ |
| 124 | + const int b = xyz1.size(0); |
| 125 | + const int n = xyz1.size(1); |
| 126 | + const int m = xyz2.size(1); |
| 127 | + |
| 128 | + const float* xyz1_data = xyz1.data<float>(); |
| 129 | + const float* xyz2_data = xyz2.data<float>(); |
| 130 | + float* gradxyz1_data = gradxyz1.data<float>(); |
| 131 | + float* gradxyz2_data = gradxyz2.data<float>(); |
| 132 | + float* graddist1_data = graddist1.data<float>(); |
| 133 | + float* graddist2_data = graddist2.data<float>(); |
| 134 | + const int* idx1_data = idx1.data<int>(); |
| 135 | + const int* idx2_data = idx2.data<int>(); |
| 136 | + |
| 137 | + for (int i = 0; i < b*n*3; i++) |
| 138 | + gradxyz1_data[i] = 0; |
| 139 | + for (int i = 0; i < b*m*3; i++) |
| 140 | + gradxyz2_data[i] = 0; |
| 141 | + for (int i = 0;i < b; i++) { |
| 142 | + for (int j = 0; j < n; j++) { |
| 143 | + const float x1 = xyz1_data[(i*n+j)*3+0]; |
| 144 | + const float y1 = xyz1_data[(i*n+j)*3+1]; |
| 145 | + const float z1 = xyz1_data[(i*n+j)*3+2]; |
| 146 | + const int j2 = idx1_data[i*n+j]; |
| 147 | + |
| 148 | + const float x2 = xyz2_data[(i*m+j2)*3+0]; |
| 149 | + const float y2 = xyz2_data[(i*m+j2)*3+1]; |
| 150 | + const float z2 = xyz2_data[(i*m+j2)*3+2]; |
| 151 | + const float g = graddist1_data[i*n+j]*2; |
| 152 | + |
| 153 | + gradxyz1_data[(i*n+j)*3+0] += g*(x1-x2); |
| 154 | + gradxyz1_data[(i*n+j)*3+1] += g*(y1-y2); |
| 155 | + gradxyz1_data[(i*n+j)*3+2] += g*(z1-z2); |
| 156 | + gradxyz2_data[(i*m+j2)*3+0] -= (g*(x1-x2)); |
| 157 | + gradxyz2_data[(i*m+j2)*3+1] -= (g*(y1-y2)); |
| 158 | + gradxyz2_data[(i*m+j2)*3+2] -= (g*(z1-z2)); |
| 159 | + } |
| 160 | + for (int j = 0; j < m; j++) { |
| 161 | + const float x1 = xyz2_data[(i*m+j)*3+0]; |
| 162 | + const float y1 = xyz2_data[(i*m+j)*3+1]; |
| 163 | + const float z1 = xyz2_data[(i*m+j)*3+2]; |
| 164 | + const int j2 = idx2_data[i*m+j]; |
| 165 | + const float x2 = xyz1_data[(i*n+j2)*3+0]; |
| 166 | + const float y2 = xyz1_data[(i*n+j2)*3+1]; |
| 167 | + const float z2 = xyz1_data[(i*n+j2)*3+2]; |
| 168 | + const float g = graddist2_data[i*m+j]*2; |
| 169 | + gradxyz2_data[(i*m+j)*3+0] += g*(x1-x2); |
| 170 | + gradxyz2_data[(i*m+j)*3+1] += g*(y1-y2); |
| 171 | + gradxyz2_data[(i*m+j)*3+2] += g*(z1-z2); |
| 172 | + gradxyz1_data[(i*n+j2)*3+0] -= (g*(x1-x2)); |
| 173 | + gradxyz1_data[(i*n+j2)*3+1] -= (g*(y1-y2)); |
| 174 | + gradxyz1_data[(i*n+j2)*3+2] -= (g*(z1-z2)); |
| 175 | + } |
| 176 | + } |
| 177 | +} |
| 178 | + |
| 179 | + |
| 180 | +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { |
| 181 | + m.def("forward", &chamfer_distance_forward, "ChamferDistance forward"); |
| 182 | + m.def("forward_cuda", &chamfer_distance_forward_cuda, "ChamferDistance forward (CUDA)"); |
| 183 | + m.def("backward", &chamfer_distance_backward, "ChamferDistance backward"); |
| 184 | + m.def("backward_cuda", &chamfer_distance_backward_cuda, "ChamferDistance backward (CUDA)"); |
| 185 | +} |
0 commit comments