This is the code for our NeurIPS 2019 paper. [Arxiv]
Linux
Python 3
PyTorch 1.0+
NVIDIA GPU + CUDA CuDNN
Installation:
Clone this repo and install other dependencies by pip install -r requirements.txt
.
Data Preparation: Please refer to [KITTI] or [NYU Depth V2] and process them into h5 files. Here also provides preprocessed data.
For training, please run
python3 train_depth_complete.py --name kitti --checkpoints_dir [path to save_dir] --train_path [train_data_dir] --test_path [test_data_dir]
If you use the preprocessed data from here. The train/test data path should be ./kitti/train or ./kitti/val/ under your data directory.
Other specifications: --continue_train
would load the lastest saved ckpt. Set hyperparameters by --lr
, --batch_size
, --weight_decay
, or others. Please refer to the options/base_options.py and options/options.py
Example command:
python3 train_depth_complete.py --name kitti --checkpoints_dir ./checkpoints --lr 0.001 --batch_size 4 --train_path './kitti/train/' --test_path './kitti/val/' --continue_train
For evalutation, please run
python3 evaluate.py --name kitti --checkpoints_dir [path to save_dir to load ckpt] --test_path [test_data_dir] [--epoch [epoch number]]
This will load the latest checkpoint to evaluate. Add --epoch
to specify which epoch checkpoint you want to load.
If you find our work useful, please consider to cite our work.
@article{zhong2019deep,
title={Deep RGB-D Canonical Correlation Analysis For Sparse Depth Completion},
author={Zhong, Yiqi and Wu, Cho-Ying and You, Suya and Neumann, Ulrich},
journal={arXiv preprint arXiv:1906.08967},
year={2019}
}