Skip to content

NeurIPS 2019: Deep RGB-D Canonical Correlation Analysis For Sparse Depth Completion

License

Notifications You must be signed in to change notification settings

choyingw/CFCNet

Repository files navigation

Deep RGB-D Canonical Correlation Analysis ForSparse Depth Completion

This is the code for our NeurIPS 2019 paper. [Arxiv]

Prerequisites

Linux
Python 3
PyTorch 1.0+
NVIDIA GPU + CUDA CuDNN 

Getting Started

Installation: Clone this repo and install other dependencies by pip install -r requirements.txt.

Data Preparation: Please refer to [KITTI] or [NYU Depth V2] and process them into h5 files. Here also provides preprocessed data.

Train/Evaluation:

For training, please run

python3 train_depth_complete.py --name kitti --checkpoints_dir [path to save_dir] --train_path [train_data_dir] --test_path [test_data_dir]

If you use the preprocessed data from here. The train/test data path should be ./kitti/train or ./kitti/val/ under your data directory.

Other specifications: --continue_train would load the lastest saved ckpt. Set hyperparameters by --lr, --batch_size, --weight_decay, or others. Please refer to the options/base_options.py and options/options.py

Example command:

python3 train_depth_complete.py --name kitti --checkpoints_dir ./checkpoints --lr 0.001 --batch_size 4 --train_path './kitti/train/' --test_path './kitti/val/' --continue_train

For evalutation, please run

python3 evaluate.py --name kitti --checkpoints_dir [path to save_dir to load ckpt] --test_path [test_data_dir] [--epoch [epoch number]]

This will load the latest checkpoint to evaluate. Add --epoch to specify which epoch checkpoint you want to load.

If you find our work useful, please consider to cite our work.

@article{zhong2019deep,
  title={Deep RGB-D Canonical Correlation Analysis For Sparse Depth Completion},
  author={Zhong, Yiqi and Wu, Cho-Ying and You, Suya and Neumann, Ulrich},
  journal={arXiv preprint arXiv:1906.08967},
  year={2019}
}