Skip to content

Commit 2c0f54a

Browse files
committed
Feat: Update Readme
1 parent 1f98ebf commit 2c0f54a

File tree

1 file changed

+7
-5
lines changed

1 file changed

+7
-5
lines changed

README.md

Lines changed: 7 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ So you can run this example in your computer(maybe it take just only 1~2 minitue
1515
- [x] Distributional(C51) [[7]](#reference)
1616
- [x] Rainbow [[8]](#reference)
1717

18-
## PG
18+
## PG(Policy Gradient)
1919
- [x] REINFORCE [[9]](#reference)
2020
- [x] Actor Critic [[10]](#reference)
2121
- [x] Advantage Actor Critic
@@ -33,12 +33,14 @@ So you can run this example in your computer(maybe it take just only 1~2 minitue
3333
- [ ] IMPALA [[23]](#reference)
3434
- [ ] R2D2 [[16]](#reference)
3535

36-
## Will
37-
- [ ] RND [[17]](#reference)
38-
- [ ] ICM [[22]](#refercence)
36+
## Distributional DQN
3937
- [ ] QRDQN [[18]](#reference)
4038
- [ ] IQN [[19]](#reference)
4139

40+
## Exploration
41+
- [ ] RND [[17]](#reference)
42+
- [ ] ICM [[22]](#refercence)
43+
4244

4345
## Reference
4446
[1][Playing Atari with Deep Reinforcement Learning](http://arxiv.org/abs/1312.5602)
@@ -62,7 +64,7 @@ So you can run this example in your computer(maybe it take just only 1~2 minitue
6264
[19][Implicit Quantile Networks for Distributional Reinforcement Learning](https://arxiv.org/pdf/1806.06923.pdf)
6365
[20][A Natural Policy Gradient](https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf)
6466
[21][SAMPLE EFFICIENT ACTOR-CRITIC WITH EXPERIENCE REPLAY](https://arxiv.org/pdf/1611.01224.pdf)
65-
[22][Curiosity-driven Exploration by Self-supervised Prediction](https://arxiv.org/pdf/1705.05363.pdf)
67+
[22][Curiosity-driven Exploration by Self-supervised Prediction](https://arxiv.org/pdf/1705.05363.pdf)
6668
[23][IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures](https://arxiv.org/pdf/1802.01561.pdf)
6769

6870

0 commit comments

Comments
 (0)