forked from tensorflow/hub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add initial
search.py
for module search.
For now hardwire to use tfds datasets for image classification. PiperOrigin-RevId: 275846855
- Loading branch information
1 parent
16c4783
commit d193c13
Showing
2 changed files
with
139 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
# Copyright 2019 The TensorFlow Hub Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""Tool to rank modules to use in a downstream classification task.""" | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
from absl import app | ||
from absl import flags | ||
|
||
import pandas as pd | ||
import numpy as np | ||
import tensorflow.compat.v2 as tf | ||
|
||
from tensorflow_hub.tools.module_search import utils | ||
|
||
FLAGS = flags.FLAGS | ||
|
||
flags.DEFINE_string("dataset", None, | ||
"Specification of a dataset. E.g. use `cifar10#1000` to " | ||
"perform search using 1000 examples from tfds `cifar10` " | ||
"dataset.") | ||
|
||
flags.DEFINE_multi_string("module", None, "Module to consider in the search") | ||
|
||
flags.DEFINE_string("module_list", None, | ||
"Path to text file with a module per line to be considered in the search." | ||
"Empty lines and lines starting with # are ignored") | ||
|
||
|
||
def load_data(data_spec): | ||
return utils.load_data(**data_spec) | ||
|
||
|
||
def load_raw_features(data_spec): | ||
data = load_data(data_spec=data_spec) | ||
return data.map(lambda x: tf.image.resize(x["image"], (224, 224))) | ||
|
||
|
||
def load_labels(data_spec): | ||
data = load_data(data_spec=data_spec) | ||
return np.array([x for x in data.map(lambda x: x["label"])]) | ||
|
||
|
||
def compute_embeddings(module_spec, data_spec): | ||
raw_features = load_raw_features(data_spec=data_spec) | ||
embedding_fn = utils.load_embedding_fn( | ||
module=module_spec) | ||
outputs = [] | ||
for batch in raw_features.batch(10): | ||
outputs.extend(embedding_fn(batch)) | ||
return np.array(outputs) | ||
|
||
|
||
def compute_score(module_spec, data_spec): | ||
embeddings = compute_embeddings(module_spec=module_spec, | ||
data_spec=data_spec) | ||
distances = utils.compute_distance_matrix_loo(embeddings) | ||
labels = load_labels(data_spec=data_spec) | ||
error_rate = utils.knn_errorrate_loo(distances, labels, k=1) | ||
return np.array(error_rate) | ||
|
||
|
||
def main(argv): | ||
if len(argv) > 1: | ||
raise app.UsageError('Too many command-line arguments.') | ||
|
||
if not FLAGS.dataset: | ||
raise app.UsageError("--dataset is a required argument.") | ||
|
||
module_list = [] | ||
if FLAGS.module: | ||
module_list.extend(FLAGS.module) | ||
|
||
if FLAGS.module_list: | ||
with tf.io.gfile.GFile(FLAGS.module_list) as f: | ||
lines = f.read().split("\n") | ||
module_list.extend([l for l in lines if l != "" and not l.startswith("#")]) | ||
|
||
ds_sections = FLAGS.dataset.split("#") | ||
dataset = ds_sections[0] | ||
train_examples = int(ds_sections[1]) if len(ds_sections) != 0 else None | ||
data_spec = { | ||
"dataset": dataset, | ||
"split": "train", | ||
"num_examples": train_examples, | ||
} | ||
|
||
results = [] | ||
for module in module_list: | ||
results.append(( | ||
module, data_spec, | ||
compute_score(module_spec=module, data_spec=data_spec))) | ||
|
||
df = pd.DataFrame(results, columns=["module", "data", "1nn"]) | ||
df = df.filter(["module", "1nn"]) | ||
df.sort_values(["1nn"]) | ||
df.reset_index(drop=True) | ||
df.set_index("module") | ||
|
||
with pd.option_context( | ||
"display.max_rows", None, | ||
"display.max_columns", None, | ||
"display.precision", 3, | ||
"max_colwidth", -1, # Don't truncate columns (e.g. module name). | ||
"display.expand_frame_repr", False, # Don't wrap output. | ||
): | ||
print("# Module ranking for %s" % data_spec) | ||
print(df) | ||
|
||
|
||
if __name__ == '__main__': | ||
app.run(main) |