-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
48 lines (34 loc) · 1.47 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
from utils import load_checkpoint, save_some_validation_examples
import torch.optim as optim
import config
from dataset import MapDataset
from generator_model import Generator
# from generator_model_transformer import Generator
from generator_model_self_attention import Generator
# from generator_model_attention import Generator
# from generator_model_MSA_SE import Generator
# from discriminator_model import Discriminator
from torch.utils.data import DataLoader
import time
torch.backends.cudnn.benchmark = True
def main():
# disc = Discriminator(in_channels=3).to(config.DEVICE)
gen = Generator(in_channels=3, features=64).to(config.DEVICE)
# opt_disc = optim.Adam(disc.parameters(), lr=config.LEARNING_RATE, betas=(0.5, 0.999), )
opt_gen = optim.Adam(gen.parameters(), lr=config.LEARNING_RATE, betas=(0.5, 0.999))
if config.LOAD_MODEL:
# load_checkpoint(
# "checkpoints/weights_MSA_SE/gen_pix2pix_transformer-400.pth.tar", gen, opt_gen, config.LEARNING_RATE,
# )
load_checkpoint(
config.CHECKPOINT_GEN, gen, opt_gen, config.LEARNING_RATE,
)
val_dataset = MapDataset(root_dir=config.VAL_DIR)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False)
save_some_validation_examples(gen, val_loader, folder="predict_cityscape/predict_transcgan_WGAN_cityscape")
if __name__ == "__main__":
start = time.time()
main()
end = time.time()
print(f"running time{end - start}")