forked from neuralchen/SimSwap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
148 lines (119 loc) · 5.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import time
import os
import numpy as np
import torch
from torch.autograd import Variable
from collections import OrderedDict
from subprocess import call
import fractions
from options.train_options import TrainOptions
from data.data_loader import CreateDataLoader
from data.dataset_class import FaceDataSet
from torch.utils.data import DataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
import cv2
from torchvision import transforms
def lcm(a,b): return abs(a * b)/fractions.gcd(a,b) if a and b else 0
detransformer = transforms.Compose([
transforms.Normalize([0, 0, 0], [1/0.229, 1/0.224, 1/0.225]),
transforms.Normalize([-0.485, -0.456, -0.406], [1, 1, 1])
])
opt = TrainOptions().parse()
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
if opt.continue_train:
try:
start_epoch, epoch_iter = np.loadtxt(iter_path , delimiter=',', dtype=int)
except:
start_epoch, epoch_iter = 1, 0
print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter))
else:
start_epoch, epoch_iter = 1, 0
opt.print_freq = lcm(opt.print_freq, opt.batchSize)
if opt.debug:
opt.display_freq = 1
opt.print_freq = 1
opt.niter = 1
opt.niter_decay = 0
opt.max_dataset_size = 10
dataset = FaceDataSet('people_list.txt', opt.batchSize)
data_loader = DataLoader(dataset, batch_size = opt.batchSize, shuffle=True)
dataset_size = len(data_loader)
device = torch.device("cuda:0")
model = create_model(opt)
visualizer = Visualizer(opt)
optimizer_G, optimizer_D = model.module.optimizer_G, model.module.optimizer_D
total_steps = (start_epoch-1) * 8608 + epoch_iter
display_delta = total_steps % opt.display_freq
print_delta = total_steps % opt.print_freq
save_delta = total_steps % opt.save_latest_freq
loss_avg = 0
refresh_count = 0
for epoch in range(start_epoch, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
if epoch != start_epoch:
epoch_iter = epoch_iter % dataset_size
for i, (img_id, img_att, latent_id, latent_att, data_type) in enumerate(data_loader):
if total_steps % opt.print_freq == print_delta:
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
# convert numpy to tensor
img_id = img_id.to(device)
img_att = img_att.to(device)
latent_id = latent_id.to(device)
latent_att = latent_att.to(device)
# whether to collect output images
save_fake = total_steps % opt.display_freq == display_delta
############## Forward Pass ######################
losses, img_fake = model(img_id, img_att, latent_id, latent_att, for_G=True)
# update Generator weights
losses = [ torch.mean(x) if not isinstance(x, int) else x for x in losses ]
loss_dict = dict(zip(model.module.loss_names, losses))
loss_G = loss_dict['G_GAN'] + loss_dict.get('G_GAN_Feat', 0) + loss_dict['G_ID'] * opt.lambda_id
if data_type[0] == 0:
loss_G += loss_dict['G_Rec']
optimizer_G.zero_grad()
loss_G.backward(retain_graph=True)
optimizer_G.step()
loss_D = (loss_dict['D_fake'] + loss_dict['D_real']) * 0.5 + loss_dict['D_GP']
optimizer_D.zero_grad()
loss_D.backward()
optimizer_D.step()
############## Display results and errors ##########
### print out errors
if total_steps % opt.print_freq == print_delta:
errors = {k: v.data.item() if not isinstance(v, int) else v for k, v in loss_dict.items()}
t = (time.time() - iter_start_time) / opt.print_freq
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
visualizer.plot_current_errors(errors, total_steps)
### display output images
if save_fake:
'''visuals = OrderedDict([('input_label', util.tensor2label(data['label'][0], opt.label_nc)),
('synthesized_image', util.tensor2im(generated.data[0])),
('real_image', util.tensor2im(data['image'][0]))])'''
for i in range(img_id.shape[0]):
if i == 0:
row1 = img_id[i]
row2 = img_att[i]
row3 = img_fake[i]
else:
row1 = torch.cat([row1, img_id[i]], dim=2)
row2 = torch.cat([row2, img_att[i]], dim=2)
row3 = torch.cat([row3, img_fake[i]], dim=2)
full = torch.cat([row1, row2, row3], dim=1).detach()
full = full.permute(1, 2, 0)
output = full.to('cpu')
output = np.array(output)*255
output = output[..., ::-1]
cv2.imwrite('samples/step_'+str(total_steps)+'.jpg', output)
### save latest model
if total_steps % opt.save_latest_freq == save_delta:
print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps))
model.module.save('latest')
np.savetxt(iter_path, (epoch, epoch_iter), delimiter=',', fmt='%d')
# end of epoch
iter_end_time = time.time()
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))