|
| 1 | +#!/usr/bin/env python |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | + |
| 4 | +""" |
| 5 | +Implementation of DeepFM with tensorflow. |
| 6 | +
|
| 7 | +Reference: |
| 8 | +[1] DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, |
| 9 | + Huifeng Guo, Ruiming Tang, Yunming Yey, Zhenguo Li, Xiuqiang He. |
| 10 | +""" |
| 11 | + |
| 12 | +import math |
| 13 | +import time |
| 14 | +import tensorflow as tf |
| 15 | +from sklearn.metrics import mean_squared_error |
| 16 | +from utils.evaluation.RatingMetrics import * |
| 17 | + |
| 18 | +__author__ = "Buracag Yang" |
| 19 | +__copyright__ = "Copyright 2018, The DeepRec Project" |
| 20 | + |
| 21 | +__license__ = "GPL" |
| 22 | +__version__ = "1.0.0" |
| 23 | +__maintainer__ = "Buracag Yang" |
| 24 | +__email__ = "15591875898@163.com" |
| 25 | +__status__ = "Development" |
| 26 | + |
| 27 | + |
| 28 | +class DeepFM(object): |
| 29 | + def __init__(self, sess, num_user, num_item, **kwargs): |
| 30 | + self.sess = sess |
| 31 | + self.num_user = num_user |
| 32 | + self.num_item = num_item |
| 33 | + self.epochs = kwargs['epochs'] |
| 34 | + self.batch_size = kwargs['batch_size'] |
| 35 | + self.learning_rate = kwargs['learning_rate'] |
| 36 | + self.reg_rate = kwargs['reg_rate'] |
| 37 | + self.num_factors = kwargs['num_factors'] |
| 38 | + self.display_step = kwargs['display_step'] |
| 39 | + self.show_time = kwargs['show_time'] |
| 40 | + self.T = kwargs['T'] |
| 41 | + self.layers = kwargs['layers'] |
| 42 | + self.field_size = kwargs['field_size'] |
| 43 | + |
| 44 | + self.train_features = None |
| 45 | + self.y = None |
| 46 | + self.dropout_keep = None |
| 47 | + self.first_oder_weight = None |
| 48 | + self.feature_embeddings = None |
| 49 | + self.feature_bias = None |
| 50 | + self.bias = None |
| 51 | + self.pred_rating = None |
| 52 | + self.pred = None |
| 53 | + self.loss = None |
| 54 | + self.optimizer = None |
| 55 | + self.num_training = None |
| 56 | + print("You are running DeepFM.") |
| 57 | + |
| 58 | + def build_network(self, feature_size): |
| 59 | + self.train_features = tf.placeholder(tf.int32, shape=[None, None]) |
| 60 | + self.y = tf.placeholder(tf.float32, shape=[None, 1]) |
| 61 | + self.dropout_keep = tf.placeholder(tf.float32) |
| 62 | + self.first_oder_weight = tf.Variable(tf.random_normal([feature_size], mean=0.0, stddev=0.01)) |
| 63 | + self.feature_embeddings = tf.Variable(tf.random_normal([feature_size, self.num_factors], mean=0.0, stddev=0.01)) |
| 64 | + self.feature_bias = tf.Variable(tf.random_uniform([feature_size, 1], 0.0, 0.0)) |
| 65 | + self.bias = tf.Variable(tf.constant(0.0)) |
| 66 | + |
| 67 | + # f(x) |
| 68 | + with tf.variable_scope("First-order"): |
| 69 | + y1 = tf.reduce_sum(tf.nn.embedding_lookup(self.first_oder_weight, self.train_features), 1, keepdims=True) |
| 70 | + |
| 71 | + with tf.variable_scope("Second-order"): |
| 72 | + nonzero_embeddings = tf.nn.embedding_lookup(self.feature_embeddings, self.train_features) |
| 73 | + sum_square = tf.square(tf.reduce_sum(nonzero_embeddings, 1)) |
| 74 | + square_sum = tf.reduce_sum(tf.square(nonzero_embeddings), 1) |
| 75 | + y_fm = 0.5 * tf.reduce_sum(tf.subtract(sum_square, square_sum), 1, keepdims=True) |
| 76 | + y_fm = tf.nn.dropout(y_fm, self.dropout_keep) |
| 77 | + |
| 78 | + with tf.variable_scope("Deep_part"): |
| 79 | + deep_inputs = tf.reshape(nonzero_embeddings, shape=[-1, self.field_size*self.num_factors]) # None * (F*K) |
| 80 | + for i in range(len(self.layers)): |
| 81 | + deep_inputs = tf.contrib.layers.fully_connected( |
| 82 | + inputs=deep_inputs, num_outputs=self.layers[i], |
| 83 | + weights_regularizer=tf.contrib.layers.l2_regularizer(self.reg_rate), scope='mlp%d' % i) |
| 84 | + # TODO: dropout |
| 85 | + |
| 86 | + y_deep = tf.contrib.layers.fully_connected( |
| 87 | + inputs=deep_inputs, num_outputs=1, activation_fn=tf.nn.relu, |
| 88 | + weights_regularizer=tf.contrib.layers.l2_regularizer(self.reg_rate), |
| 89 | + scope='deep_out') |
| 90 | + y_d = tf.reshape(y_deep, shape=[-1, 1]) |
| 91 | + |
| 92 | + with tf.variable_scope("DeepFM-out"): |
| 93 | + f_b = tf.reduce_sum(tf.nn.embedding_lookup(self.feature_bias, self.train_features), 1) |
| 94 | + b = self.bias * tf.ones_like(self.y) |
| 95 | + self.pred_rating = tf.add_n([y1, y_fm, y_d, f_b, b]) |
| 96 | + self.pred = tf.sigmoid(self.pred_rating) |
| 97 | + |
| 98 | + self.loss = tf.nn.l2_loss(tf.subtract(self.y, self.pred_rating)) + \ |
| 99 | + tf.contrib.layers.l2_regularizer(self.reg_rate)(self.feature_embeddings) |
| 100 | + |
| 101 | + self.optimizer = tf.train.AdagradOptimizer(self.learning_rate).minimize(self.loss) |
| 102 | + |
| 103 | + def train(self, train_data): |
| 104 | + self.num_training = len(train_data['Y']) |
| 105 | + total_batch = int(self.num_training / self.batch_size) |
| 106 | + rng_state = np.random.get_state() |
| 107 | + np.random.shuffle(train_data['Y']) |
| 108 | + np.random.set_state(rng_state) |
| 109 | + np.random.shuffle(train_data['X']) |
| 110 | + |
| 111 | + # train |
| 112 | + for i in range(total_batch): |
| 113 | + start_time = time.time() |
| 114 | + batch_y = train_data['Y'][i * self.batch_size:(i + 1) * self.batch_size] |
| 115 | + batch_x = train_data['X'][i * self.batch_size:(i + 1) * self.batch_size] |
| 116 | + loss, _ = self.sess.run((self.loss, self.optimizer), |
| 117 | + feed_dict={self.train_features: batch_x, |
| 118 | + self.y: batch_y, |
| 119 | + self.dropout_keep: 0.5}) |
| 120 | + if i % self.display_step == 0: |
| 121 | + print("Index: %04d; cost= %.9f" % (i + 1, np.mean(loss))) |
| 122 | + if self.show_time: |
| 123 | + print("one iteration: %s seconds." % (time.time() - start_time)) |
| 124 | + |
| 125 | + def test(self, test_data): |
| 126 | + num_example = len(test_data['Y']) |
| 127 | + feed_dict = {self.train_features: test_data['X'], self.y: test_data['Y'], self.dropout_keep: 1.0} |
| 128 | + predictions = self.sess.run(self.pred_rating, feed_dict=feed_dict) |
| 129 | + y_pred = np.reshape(predictions, (num_example,)) |
| 130 | + y_true = np.reshape(test_data['Y'], (num_example,)) |
| 131 | + predictions_bounded = np.maximum(y_pred, np.ones(num_example) * min(y_true)) # bound the lower values |
| 132 | + predictions_bounded = np.minimum(predictions_bounded, np.ones(num_example) * max(y_true)) |
| 133 | + _RMSE = math.sqrt(mean_squared_error(y_true, predictions_bounded)) |
| 134 | + print("RMSE:" + str(_RMSE)) |
| 135 | + |
| 136 | + def execute(self, train_data, test_data): |
| 137 | + init = tf.global_variables_initializer() |
| 138 | + self.sess.run(init) |
| 139 | + |
| 140 | + for epoch in range(self.epochs): |
| 141 | + print("Epoch: %04d;" % epoch) |
| 142 | + self.train(train_data) |
| 143 | + if epoch % self.T == 0: |
| 144 | + self.test(test_data) |
| 145 | + |
| 146 | + def save(self, path): |
| 147 | + saver = tf.train.Saver() |
| 148 | + saver.save(self.sess, path) |
| 149 | + |
| 150 | + # def predict(self, user_id, item_id): |
| 151 | + # return self.sess.run([self.pred_rating], feed_dict={self.user_id: user_id, self.item_id: item_id})[0] |
0 commit comments