forked from dmlc/xgboost
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_gpu_with_sklearn.py
36 lines (28 loc) · 1.14 KB
/
test_gpu_with_sklearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import xgboost as xgb
import pytest
import sys
import numpy as np
sys.path.append("tests/python")
import testing as tm # noqa
import test_with_sklearn as twskl # noqa
pytestmark = pytest.mark.skipif(**tm.no_sklearn())
rng = np.random.RandomState(1994)
def test_gpu_binary_classification():
from sklearn.datasets import load_digits
from sklearn.model_selection import KFold
digits = load_digits(2)
y = digits['target']
X = digits['data']
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for cls in (xgb.XGBClassifier, xgb.XGBRFClassifier):
for train_index, test_index in kf.split(X, y):
xgb_model = cls(
random_state=42, tree_method='gpu_hist',
n_estimators=4, gpu_id='0').fit(X[train_index], y[train_index])
preds = xgb_model.predict(X[test_index])
labels = y[test_index]
err = sum(1 for i in range(len(preds))
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
assert err < 0.1
def test_boost_from_prediction_gpu_hist():
cpu_test = twskl.run_boost_from_prediction('gpu_hist')