-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha00_common_functions.py
117 lines (87 loc) · 3.7 KB
/
a00_common_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo), IPPM RAS'
import pickle
import gzip
import cv2
import numpy as np
def save_in_file(arr, file_name):
pickle.dump(arr, gzip.open(file_name, 'wb+', compresslevel=3))
def load_from_file(file_name):
return pickle.load(gzip.open(file_name, 'rb'))
def show_image(im, name='image'):
cv2.imshow(name, im.astype(np.uint8))
cv2.waitKey(0)
cv2.destroyAllWindows()
def show_resized_image(P, w=1000, h=1000):
res = cv2.resize(P.astype(np.uint8), (w, h), interpolation=cv2.INTER_CUBIC)
show_image(res)
def load_mnist_data(type='channel_last'):
from keras.datasets import mnist
from keras.utils import np_utils
# input image dimensions
nb_classes = 10
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
if type == 'channel_first':
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
else:
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
return X_train, Y_train, X_test, Y_test
def save_history(history, path, columns=('loss', 'val_loss')):
import matplotlib.pyplot as plt
import pandas as pd
s = pd.DataFrame(history.history)
s.to_csv(path + '.csv')
plt.plot(s[list(columns)])
plt.savefig(path + '.png')
plt.close()
def prepare_image_from_camera(im_path):
img = cv2.imread(im_path)
print('Read image: {} Shape: {}'.format(im_path, img.shape))
# Take central part of image with size 224х224
img = img[8:-8, 48:-48]
print('Reduced shape: {}'.format(img.shape))
# Convert to grayscale with human based formulae https://samarthbhargav.wordpress.com/2014/05/05/image-processing-with-python-rgb-to-grayscale-conversion/
# Divider here is 16 for easier implementation of division in verilog for FPGA.
# Colors are in BGR order
gray = np.zeros(img.shape[:2], dtype=np.uint16)
gray[...] = 3*img[:, :, 0].astype(np.uint16) + 8*img[:, :, 1].astype(np.uint16) + 5*img[:, :, 2].astype(np.uint16)
gray //= 16
# Invert color (don't need this)
# gray = 255 - gray
# show_image(gray.astype(np.uint8))
# Rescale to 28x28 using mean pixel for each 8x8 block
output_image = np.zeros((28, 28), dtype=np.uint8)
for i in range(28):
for j in range(28):
output_image[i, j] = int(gray[i*8:(i+1)*8, j*8:(j+1)*8].mean())
# Check dynamic range
min_pixel = output_image.min()
max_pixel = output_image.max()
print('Min pixel: {}'.format(min_pixel))
print('Max pixel: {}'.format(max_pixel))
# Rescale dynamic range if needed (no Verilog implementation, so skip)
if 0:
if min_pixel != 0 or max_pixel != 255:
if max_pixel == min_pixel:
output_image[:, :] = 0
else:
output_image = 255 * (output_image.astype(np.float32) - min_pixel) / (max_pixel - min_pixel)
output_image = output_image.astype(np.uint8)
if 0:
u = np.unique(output_image, return_counts=True)
print(u)
# Check image (rescaled x10 times)
# show_resized_image(output_image, 280, 280)
return output_image