forked from braindotai/Watermark-Removal-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
25 lines (22 loc) · 1.39 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import argparse
from api import remove_watermark
parser = argparse.ArgumentParser(description = 'Removing Watermark')
parser.add_argument('--image-path', type = str, default = './data/watermark-unavailable/watermarked/watermarked0.png', help = 'Path to the "watermarked" image.')
parser.add_argument('--mask-path', type = str, default = './data/watermark-unavailable/masks/mask0.png', help = 'Path to the "watermark" image.')
parser.add_argument('--input-depth', type = int, default = 32, help = 'Max channel dimension of the noise input. Set it based on gpu/device memory you have available.')
parser.add_argument('--lr', type = float, default = 0.01, help = 'Learning rate.')
parser.add_argument('--training-steps', type = int, default = 3000, help = 'Number of training iterations.')
parser.add_argument('--show-step', type = int, default = 200, help = 'Interval for visualizing results.')
parser.add_argument('--reg-noise', type = float, default = 0.03, help = 'Hyper-parameter for regularized noise input.')
parser.add_argument('--max-dim', type = float, default = 512, help = 'Max dimension of the final output image')
args = parser.parse_args()
remove_watermark(
image_path = args.image_path,
mask_path = args.mask_path,
max_dim = args.max_dim,
show_step = args.show_step,
reg_noise = args.reg_noise,
input_depth = args.input_depth,
lr = args.lr,
training_steps = args.training_steps,
)