This tutorial collects answers to any How to xxx with MMDetection
. Feel free to update this doc if you meet new questions about How to
and find the answers!
The model registry in MMDet, MMCls, MMSeg all inherit from the root registry in MMCV. This allows these repositories to directly use the modules already implemented by each other. Therefore, users can use backbone networks from MMClassification in MMDetection without implementing a network that already exists in MMClassification.
Suppose you want to use MobileNetV3-small
as the backbone network of RetinaNet
, the example config is as the following.
_base_ = [
'../_base_/models/retinanet_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
# please install mmcls>=0.20.0
# import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
pretrained = 'https://download.openmmlab.com/mmclassification/v0/mobilenet_v3/convert/mobilenet_v3_small-8427ecf0.pth'
model = dict(
backbone=dict(
_delete_=True, # Delete the backbone field in _base_
type='mmcls.MobileNetV3', # Using MobileNetV3 from mmcls
arch='small',
out_indices=(3, 8, 11), # Modify out_indices
init_cfg=dict(
type='Pretrained',
checkpoint=pretrained,
prefix='backbone.')), # The pre-trained weights of backbone network in MMCls have prefix='backbone.'. The prefix in the keys will be removed so that these weights can be normally loaded.
# Modify in_channels
neck=dict(in_channels=[24, 48, 96], start_level=0))
MMClassification also provides a wrapper for the PyTorch Image Models (timm) backbone network, users can directly use the backbone network in timm through MMClassification. Suppose you want to use EfficientNet-B1 as the backbone network of RetinaNet, the example config is as the following.
# https://github.com/open-mmlab/mmdetection/blob/master/configs/timm_example/retinanet_timm_efficientnet_b1_fpn_1x_coco.py
_base_ = [
'../_base_/models/retinanet_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
# please install mmcls>=0.20.0
# import mmcls.models to trigger register_module in mmcls
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)
model = dict(
backbone=dict(
_delete_=True, # Delete the backbone field in _base_
type='mmcls.TIMMBackbone', # Using timm from mmcls
model_name='efficientnet_b1',
features_only=True,
pretrained=True,
out_indices=(1, 2, 3, 4)), # Modify out_indices
neck=dict(in_channels=[24, 40, 112, 320])) # Modify in_channels
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
type='mmcls.TIMMBackbone'
means use the TIMMBackbone
class from MMClassification in MMDetection, and the model used is EfficientNet-B1
, where mmcls
means the MMClassification repo and TIMMBackbone
means the TIMMBackbone wrapper implemented in MMClassification.
For the principle of the Hierarchy Registry, please refer to the MMCV document. For how to use other backbones in MMClassification, you can refer to the MMClassification document.
If you want to use Mosaic
in training, please make sure that you use MultiImageMixDataset
at the same time. Taking the 'Faster R-CNN' algorithm as an example, you should modify the values of train_pipeline
and train_dataset
in the config as below:
# Open configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py directly and add the following fields
data_root = 'data/coco/'
dataset_type = 'CocoDataset'
img_scale=(1333, 800)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
dict(
type='RandomAffine',
scaling_ratio_range=(0.1, 2),
border=(-img_scale[0] // 2, -img_scale[1] // 2)), # The image will be enlarged by 4 times after Mosaic processing,so we use affine transformation to restore the image size.
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
train_dataset = dict(
_delete_ = True, # remove unnecessary Settings
type='MultiImageMixDataset',
dataset=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True)
],
filter_empty_gt=False,
),
pipeline=train_pipeline
)
data = dict(
train=train_dataset
)
If you have freezed the backbone network in the config and want to unfreeze it after some epoches, you can write a hook function to do it. Taking the Faster R-CNN with the resnet backbone as an example, you can freeze one stage of the backbone network and add a custom_hooks
in the config as below:
_base_ = [
'../_base_/models/faster_rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
# freeze one stage of the backbone network.
backbone=dict(frozen_stages=1),
)
custom_hooks = [dict(type="UnfreezeBackboneEpochBasedHook", unfreeze_epoch=1)]
Meanwhile write the hook class UnfreezeBackboneEpochBasedHook
in mmdet/core/hook/unfreeze_backbone_epoch_based_hook.py
from mmcv.parallel import is_module_wrapper
from mmcv.runner.hooks import HOOKS, Hook
@HOOKS.register_module()
class UnfreezeBackboneEpochBasedHook(Hook):
"""Unfreeze backbone network Hook.
Args:
unfreeze_epoch (int): The epoch unfreezing the backbone network.
"""
def __init__(self, unfreeze_epoch=1):
self.unfreeze_epoch = unfreeze_epoch
def before_train_epoch(self, runner):
# Unfreeze the backbone network.
# Only valid for resnet.
if runner.epoch == self.unfreeze_epoch:
model = runner.model
if is_module_wrapper(model):
model = model.module
backbone = model.backbone
if backbone.frozen_stages >= 0:
if backbone.deep_stem:
backbone.stem.train()
for param in backbone.stem.parameters():
param.requires_grad = True
else:
backbone.norm1.train()
for m in [backbone.conv1, backbone.norm1]:
for param in m.parameters():
param.requires_grad = True
for i in range(1, backbone.frozen_stages + 1):
m = getattr(backbone, f'layer{i}')
m.train()
for param in m.parameters():
param.requires_grad = True
If you want to get the channels of a new backbone, you can build this backbone alone and input a pseudo image to get each stage output.
Take ResNet
as an example:
from mmdet.models import ResNet
import torch
self = ResNet(depth=18)
self.eval()
inputs = torch.rand(1, 3, 32, 32)
level_outputs = self.forward(inputs)
for level_out in level_outputs:
print(tuple(level_out.shape))
Output of the above script is as below:
(1, 64, 8, 8)
(1, 128, 4, 4)
(1, 256, 2, 2)
(1, 512, 1, 1)
Users can get the channels of the new backbone by Replacing the ResNet(depth=18)
in this script with their customized backbone.