Skip to content

Latest commit

 

History

History
76 lines (62 loc) · 1.85 KB

README.md

File metadata and controls

76 lines (62 loc) · 1.85 KB

TFRecord reader

Installation

pip3 install tfrecord

Usage

It's recommended to create an index file for each TFRecord file. Index file must be provided when using multiple workers, otherwise the loader may return duplicate records.

python3 -m tfrecord.tools.tfrecord2idx <tfrecord path> <index path>

Use TFRecordDataset to read TFRecord files in PyTorch.

import torch
from tfrecord.torch.dataset import TFRecordDataset

tfrecord_path = "/path/to/data.tfrecord"
index_path = None
description = {"image": "byte", "label": "float"}
dataset = TFRecordDataset(tfrecord_path, index_path, description)
loader = torch.utils.data.DataLoader(dataset, batch_size=32)

data = next(iter(loader))
print(data)

Use MultiTFRecordDataset to read multiple TFRecord files. This class samples from given tfrecord files with given probability.

import torch
from tfrecord.torch.dataset import MultiTFRecordDataset

tfrecord_pattern = "/path/to/{}.tfrecord"
index_pattern = "/path/to/{}.index"
splits = {
    "dataset1": 0.8,
    "dataset2": 0.2,
}
description = {"image": "byte", "label": "int"}
dataset = MultiTFRecordDataset(tfrecord_pattern, index_pattern, splits, description)
loader = torch.utils.data.DataLoader(dataset, batch_size=32)

data = next(iter(loader))
print(data)

Creating tfrecord files:

import tfrecord

writer = tfrecord.TFRecordWriter("/path/to/data.tfrecord")
writer.write({
    "image": (image_bytes, "byte"),
    "label": (label, "float"),
    "index": (index, "int")
})
writer.close()

Note: To write tfrecord files you also need an additional dependency:

pip3 install crc32c

Reading tfrecord files in python:

import tfrecord

loader = tfrecord.tfrecord_loader("/path/to/data.tfrecord", None, {
    "image": "byte",
    "label": "float",
    "index": "int"
})
for record in loader:
    print(record["label"])