Skip to content

Latest commit

 

History

History
205 lines (169 loc) · 7.57 KB

leetcode560和为K的子数组.md

File metadata and controls

205 lines (169 loc) · 7.57 KB

如果阅读时,发现错误,或者动画不可以显示的问题可以添加我微信好友 tan45du_one ,备注 github + 题目 + 问题 向我反馈

感谢支持,该仓库会一直维护,希望对各位有一丢丢帮助。

另外希望手机阅读的同学可以来我的 公众号:程序厨 两个平台同步,想要和题友一起刷题,互相监督的同学,可以在我的小屋点击刷题小队进入。

题目描述

给定一个整数数组和一个整数 k,你需要找到该数组中和为 k 的连续的子数组的个数。

示例 1 :

输入:nums = [1,1,1], k = 2 输出: 2 , [1,1] 与 [1,1] 为两种不同的情况。

暴力法

解析

这个题目的题意很容易理解,就是让我们返回和为 k 的子数组的个数,所以我们直接利用双重循环解决该题,这个是很容易想到的。我们直接看代码吧。

class Solution {
    public int subarraySum(int[] nums, int k) {
         int len = nums.length;
         int sum = 0;
         int count = 0;
         for (int i = 0; i < len; ++i) {
             for (int j = i; j < len; ++j) {
                 sum += nums[j];
                 if (sum == k) {
                     count++;
                 }
             }
             sum = 0;
         }
         return count;
    }
}

下面我们我们使用前缀和的方法来解决这个题目,那么我们先来了解一下前缀和是什么东西。其实这个思想我们很早就接触过了。见下图

我们通过上图发现,我们的 presum 数组中保存的是 nums 元素的和,presum[1] = presum[0] + nums[0];

presum [2] = presum[1] + nums[1],presum[3] = presum[2] + nums[2] ... 所以我们通过前缀和数组可以轻松得到每个区间的和,

例如我们需要获取 nums[2] 到 nums[4] 这个区间的和,我们则完全根据 presum 数组得到,是不是有点和我们之前说的字符串匹配算法中 BM,KMP 中的 next 数组和 suffix 数组作用类似。

那么我们怎么根据 presum 数组获取 nums[2] 到 nums[4] 区间的和呢?见下图

前缀和

所以我们 nums[2] 到 nums[4] 区间的和则可以由 presum[5] - presum[2] 得到。

也就是前 5 项的和减去前 2 项的和,得到第 3 项到第 5 项的和。那么我们可以遍历 presum 就能得到和为 K 的子数组的个数啦。

直接上代码。

class Solution {
    public int subarraySum(int[] nums, int k) {
        //前缀和数组
        int[] presum = new int[nums.length+1];
        for (int i = 0; i < nums.length; i++) {
            //这里需要注意,我们的前缀和是presum[1]开始填充的
            presum[i+1] = nums[i] + presum[i];
        }
        //统计个数
        int count = 0;
        for (int i = 0; i < nums.length; ++i) {
            for (int j = i; j < nums.length; ++j) {
                //注意偏移,因为我们的nums[2]到nums[4]等于presum[5]-presum[2]
                //所以这样就可以得到nums[i,j]区间内的和
                if (presum[j+1] - presum[i] == k) {
                    count++;
                }
            }
        }
        return count;
    }
}

我们通过上面的例子我们简单了解了前缀和思想,那么我们如果继续将其优化呢?

前缀和 + HashMap

解析

其实我们在之前的两数之和中已经用到了这个方法,我们一起来回顾两数之和 HashMap 的代码.

class Solution {
    public int[] twoSum(int[] nums, int target) {

        HashMap<Integer,Integer> map  = new HashMap<>();
        //一次遍历
        for (int i = 0; i < nums.length; ++i) {
            //存在时,我们用数组得值为 key,索引为 value
            if (map.containsKey(target - nums[i])){
               return new int[]{i,map.get(target-nums[i])};
            }
            //存入值
            map.put(nums[i],i);
        }
        //返回
        return new int[]{};
    }
}

上面代码中,我们将数组的值和索引存入 map 中,当我们遍历到某一值 x 时,判断 map 中是否含有 target - x,即可。其实我们现在这个题目和两数之和原理是一致的,只不过我们是将所有的前缀和前缀和出现的次数存到了 map 里。下面我们来看一下代码的执行过程。

动图解析

题目代码

Java Code:

class Solution {
    public int subarraySum(int[] nums, int k) {
        if (nums.length == 0) {
            return 0;
        }
        HashMap<Integer,Integer> map = new HashMap<>();
        //细节,这里需要预存前缀和为 0 的情况,会漏掉前几位就满足的情况
        //例如输入[1,1,0],k = 2 如果没有这行代码,则会返回0,漏掉了1+1=2,和1+1+0=2的情况
        //输入:[3,1,1,0] k = 2时则不会漏掉
        //因为presum[3] - presum[0]表示前面 3 位的和,所以需要map.put(0,1),垫下底
        map.put(0, 1);
        int count = 0;
        int presum = 0;
        for (int x : nums) {
            presum += x;
            //当前前缀和已知,判断是否含有 presum - k的前缀和,那么我们就知道某一区间的和为 k 了。
            if (map.containsKey(presum - k)) {
                count += map.get(presum - k);//获取presum-k前缀和出现次数
            }
            //更新
            map.put(presum,map.getOrDefault(presum,0) + 1);
        }
        return count;
    }
}

C++ Code:

public:
    int subarraySum(vector<int>& nums, int k) {
         if (nums.size() == 0) {
            return 0;
        }
        map <int, int> m;
        //细节,这里需要预存前缀和为 0 的情况,会漏掉前几位就满足的情况
        //例如输入[1,1,0],k = 2 如果没有这行代码,则会返回0,漏掉了1+1=2,和1+1+0=2的情况
        //输入:[3,1,1,0] k = 2时则不会漏掉
        //因为presum[3] - presum[0]表示前面 3 位的和,所以需要m.insert({0,1}),垫下底
        m.insert({0, 1});
        int count = 0;
        int presum = 0;
        for (int x : nums) {
            presum += x;
            //当前前缀和已知,判断是否含有 presum - k的前缀和,那么我们就知道某一区间的和为 k 了。
            if (m.find(presum - k) != m.end()) {
                count += m[presum - k];//获取presum-k前缀和出现次数
            }
            //更新
           if(m.find(presum) != m.end()) m[presum]++;
           else m[presum] = 1;
        }
        return count;
    }
};

Go Code:

func subarraySum(nums []int, k int) int {
    m := map[int]int{}
    // m存的是前缀和,没有元素的时候,和为0,且有1个子数组(空数组)满足条件,即m[0] = 1
    m[0] = 1
    sum := 0
    cnt := 0
    for _, num := range nums {
        sum += num
        if v, ok := m[sum - k]; ok {
            cnt += v
        }
        // 更新满足前缀和的子数组数量
        m[sum]++
    }
    return cnt
}