Skip to content

Latest commit

 

History

History
141 lines (115 loc) · 5.04 KB

二叉树的后续遍历 (迭代).md

File metadata and controls

141 lines (115 loc) · 5.04 KB

之前给大家介绍了二叉树的前序遍历中序遍历的迭代法和 Morris 方法,今天咱们来说一下二叉后序遍历的迭代法及 Morris 方法。

注:阅读该文章前,建议各位先阅读之前的三篇文章,对该文章的理解有很大帮助。

迭代

后序遍历的相比前两种方法,难理解了一些,所以这里我们需要认真思考一下,每一行的代码的作用。

我们先来复习一下,二叉树的后序遍历

我们知道后序遍历的顺序是, 对于树中的某节点, 先遍历该节点的左子树, 再遍历其右子树, 最后遍历该节点

那么我们如何利用栈来解决呢?

我们直接来看动画,看动画之前,但是我们需要带着问题看动画,问题搞懂之后也就搞定了后序遍历。

1.动画中的橙色指针发挥了什么作用

2.为什么动画中的某节点,为什么出栈后又入栈呢?

好啦,下面我们看动画吧!

后序遍历迭代

相信大家看完动画之后,也能够发现其中规律。

我们来对其中之前提出的问题进行解答

1.动画中的橙色箭头的作用?

用来定位住上一个访问节点,这样我们就知道 cur 节点的 right 节点是否被访问,如果被访问,我们则需要遍历 cur 节点。

2.为什么有的节点出栈后又入栈了呢?

出栈又入栈的原因是,我们发现 cur 节点的 right 不为 null ,并且 cur.right 也没有被访问过。因为 cur.right != preNode ,所以当前我们还不能够遍历该节点,应该先遍历其右子树中的节点。

所以我们将其入栈后,然后cur = cur.right

class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        Stack<TreeNode> stack = new Stack<>();
        List<Integer> list = new ArrayList<>();
        TreeNode cur = root;
        //这个用来记录前一个访问的节点,也就是橙色箭头
        TreeNode preNode = null;
        while (cur != null || !stack.isEmpty()) {
            //和之前写的中序一致
            while (cur != null) {
                stack.push(cur);
                cur = cur.left;
            }
            //1.出栈,可以想一下,这一步的原因。
            cur = stack.pop();
            //2.if 里的判断语句有什么含义?
            if (cur.right == null || cur.right == preNode) {
                list.add(cur.val);
                //更新下 preNode,也就是定位住上一个访问节点。
                preNode = cur;
                cur = null;
            } else {
                //3.再次压入栈,和上面那条 1 的关系?
                stack.push(cur);
                cur = cur.right;
            }
        }
        return list;
    }
}

Swift Code:

class Solution {
    func postorderTraversal(_ root: TreeNode?) -> [Int] {
        var list:[Int] = []
        var stack:[TreeNode] = []
        var cur = root, preNode: TreeNode?
        while !stack.isEmpty || cur != nil {
            //和之前写的中序一致
            while cur != nil {
                stack.append(cur!)
                cur = cur!.left
            }
            //1.出栈,可以想一下,这一步的原因。
            cur = stack.popLast()
            //2.if 里的判断语句有什么含义?
            if cur!.right === nil || cur!.right === preNode  {
                list.append(cur!.val)
                //更新下 preNode,也就是定位住上一个访问节点。
                preNode = cur
                cur = nil
            } else {
                //3.再次压入栈,和上面那条 1 的关系?
                stack.append(cur!)
                cur = cur!.right
            }
        }
        return list
    }
}

Go Code:

func postorderTraversal(root *TreeNode) []int {
    res := []int{}
    if root == nil {
        return res
    }
    stk := []*TreeNode{}
    cur := root
    var pre *TreeNode
    for len(stk) != 0 || cur != nil {
        for cur != nil {
            stk = append(stk, cur)
            cur = cur.Left
        }
        // 这里符合本文最后的说法,使用先获取栈顶元素但是不弹出,根据栈顶元素的情况进行响应的处理。
        temp := stk[len(stk) - 1]
        if temp.Right == nil || temp.Right == pre {
            stk = stk[: len(stk) - 1]
            res = append(res, temp.Val)
            pre = temp
        } else {
            cur = temp.Right
        }
    }
    return res
}

当然也可以修改下代码逻辑将 cur = stack.pop() 改成 cur = stack.peek(),下面再修改一两行代码也可以实现,这里这样写是方便动画模拟,大家可以随意发挥。

时间复杂度 O(n), 空间复杂度 O(n)

这里二叉树的三种迭代方式到这里就结束啦,大家可以进行归纳总结,三种遍历方式大同小异,建议各位,掌握之后,自己手撕一下,从搭建二叉树开始。