|
| 1 | +from keras import backend |
| 2 | +from keras.models import Sequential |
| 3 | +from keras.layers import Dense, LSTM, Dropout |
| 4 | +from model.root.traditional.root_rnn import RootRnn |
| 5 | + |
| 6 | +class Rnn1HL(RootRnn): |
| 7 | + """ |
| 8 | + Recurrent Neural Network (1 Hidden Layer) |
| 9 | + """ |
| 10 | + def __init__(self, root_base_paras=None, root_rnn_paras=None): |
| 11 | + RootRnn.__init__(self, root_base_paras, root_rnn_paras) |
| 12 | + self.filename = "RNN-1HL-sliding_{}-net_para_{}".format(root_base_paras["sliding"], [self.hidden_sizes, self.epoch, |
| 13 | + self.batch_size, self.learning_rate, self.activations, self.optimizer, self.loss, self.dropouts]) |
| 14 | + |
| 15 | + def _training__(self): |
| 16 | + # The RNN architecture |
| 17 | + self.model = Sequential() |
| 18 | + self.model.add(LSTM(units=self.hidden_sizes[0], activation=self.activations[0], input_shape=(self.X_train.shape[1], 1))) |
| 19 | + self.model.add(Dropout(self.dropouts[0])) |
| 20 | + self.model.add(Dense(units=1, activation=self.activations[1])) |
| 21 | + self.model.compile(loss=self.loss, optimizer=self.optimizer) |
| 22 | + backend.set_session(backend.tf.Session(config=backend.tf.ConfigProto(intra_op_parallelism_threads=2, inter_op_parallelism_threads=2))) |
| 23 | + ml = self.model.fit(self.X_train, self.y_train, epochs=self.epoch, batch_size=self.batch_size, verbose=self.print_train) |
| 24 | + self.loss_train = ml.history["loss"] |
| 25 | + |
| 26 | + |
| 27 | +class Rnn2HL(RootRnn): |
| 28 | + """ |
| 29 | + Recurrent Neural Network (2 Hidden Layer) |
| 30 | + """ |
| 31 | + def __init__(self, root_base_paras=None, root_rnn_paras=None): |
| 32 | + RootRnn.__init__(self, root_base_paras, root_rnn_paras) |
| 33 | + self.filename = "RNN-2HL-sliding_{}-net_para_{}".format(root_base_paras["sliding"], [self.hidden_sizes, |
| 34 | + self.epoch, self.batch_size, self.learning_rate, self.activations, self.optimizer, self.loss]) |
| 35 | + |
| 36 | + def _training__(self): |
| 37 | + # The RNN architecture |
| 38 | + self.model = Sequential() |
| 39 | + self.model.add(LSTM(units=self.hidden_sizes[0], return_sequences=True, input_shape=(self.X_train.shape[1], 1), activation=self.activations[0])) |
| 40 | + self.model.add(Dropout(self.dropouts[0])) |
| 41 | + self.model.add(LSTM(units=self.hidden_sizes[1], activation=self.activations[1])) |
| 42 | + self.model.add(Dropout(self.dropouts[1])) |
| 43 | + self.model.add(Dense(units=1, activation=self.activations[2])) |
| 44 | + self.model.compile(loss=self.loss, optimizer=self.optimizer) |
| 45 | + backend.set_session(backend.tf.Session(config=backend.tf.ConfigProto(intra_op_parallelism_threads=2, inter_op_parallelism_threads=2))) |
| 46 | + ml = self.model.fit(self.X_train, self.y_train, epochs=self.epoch, batch_size=self.batch_size, verbose=self.print_train) |
| 47 | + self.loss_train = ml.history["loss"] |
| 48 | + |
| 49 | + |
| 50 | + |
| 51 | +class Lstm1HL(RootRnn): |
| 52 | + """ |
| 53 | + Long-short Term Memory Neural Network (1 Hidden Layer) |
| 54 | + """ |
| 55 | + def __init__(self, root_base_paras=None, root_rnn_paras=None): |
| 56 | + RootRnn.__init__(self, root_base_paras, root_rnn_paras) |
| 57 | + self.filename = "LSTM-1HL-sliding_{}-net_para_{}".format(root_base_paras["sliding"], [self.hidden_sizes, |
| 58 | + self.epoch, self.batch_size, self.learning_rate, self.activations, self.optimizer, self.loss]) |
| 59 | + |
| 60 | + def _training__(self): |
| 61 | + # The LSTM architecture |
| 62 | + self.model = Sequential() |
| 63 | + self.model.add(LSTM(units=self.hidden_sizes[0], input_shape=(None, 1), activation=self.activations[0])) |
| 64 | + self.model.add(Dense(units=1, activation=self.activations[1])) |
| 65 | + self.model.compile(loss=self.loss, optimizer=self.optimizer) |
| 66 | + backend.set_session(backend.tf.Session(config=backend.tf.ConfigProto(intra_op_parallelism_threads=2, inter_op_parallelism_threads=2))) |
| 67 | + ml = self.model.fit(self.X_train, self.y_train, epochs=self.epoch, batch_size=self.batch_size, verbose=self.print_train) |
| 68 | + self.loss_train = ml.history["loss"] |
| 69 | + |
| 70 | + |
| 71 | +class Lstm2HL(RootRnn): |
| 72 | + """ |
| 73 | + Long-short Term Memory Neural Network (2 Hidden Layer) |
| 74 | + """ |
| 75 | + def __init__(self, root_base_paras=None, root_rnn_paras=None): |
| 76 | + RootRnn.__init__(self, root_base_paras, root_rnn_paras) |
| 77 | + self.filename = "LSTM-2HL-sliding_{}-net_para_{}".format(root_base_paras["sliding"], [self.hidden_sizes, |
| 78 | + self.epoch, self.batch_size, self.learning_rate, self.activations, self.optimizer, self.loss]) |
| 79 | + def _training__(self): |
| 80 | + # The LSTM architecture |
| 81 | + self.model = Sequential() |
| 82 | + self.model.add(LSTM(units=self.hidden_sizes[0], return_sequences=True, input_shape=(None, 1), activation=self.activations[0])) |
| 83 | + self.model.add(LSTM(units=self.hidden_sizes[1], activation=self.activations[1])) |
| 84 | + self.model.add(Dense(units=1, activation=self.activations[2])) |
| 85 | + self.model.compile(loss=self.loss, optimizer=self.optimizer) |
| 86 | + backend.set_session(backend.tf.Session(config=backend.tf.ConfigProto(intra_op_parallelism_threads=2, inter_op_parallelism_threads=2))) |
| 87 | + ml = self.model.fit(self.X_train, self.y_train, epochs=self.epoch, batch_size=self.batch_size, verbose=self.print_train) |
| 88 | + self.loss_train = ml.history["loss"] |
| 89 | + |
0 commit comments